
COS 597A: Quantum Cryptography Princeton University
Lecture 6 (October , 2018)
Lecturer: Mark Zhandry Scribe: Kevin Liu

Notes for Lecture 6

Today we will see how quantum algorithms can factor integers. This is quite im-
portant as factorization is one of the most important assumption in Cryptography.
But before switching to factoring, let us look at some applications of Grover’s search
algorithm.

1 Pre-image search and collision finding

In the last lecture, we have started seeing quantum algorithms. The first one having
some ‘real’ applications is Grover’s algorithm. Let’s recall the algorithm: assume
F : {0, 1}n → {0, 1} with δ fraction of inputs accepted. In other words, Prx[f(x) =
1] = δ. Then we can find one accepting input with O((1/δ)1/2) evaluations to f .
Classically, what we can do is to just try a random input and with (expected) O(1/δ)
evaluations to find one accepting input. The number of evaluations to f is usually
query complexity, the number of queries made to f .

One application of Grover’s algorithm is to invert an one-way function. Consider the
following problem: given g : {0, 1}n → {0, 1}m, given g(x) (but not x) for a random
x, the goal is to find any y such that g(y) = g(x). This is called pre-image search
problem.

A function makes this problem hard is roughly called “one-way function”. We can
use Grover’s algorithm to solve this problem: let f(y) = 1 if and only if g(x) = g(y),
0 otherwise; and δ ≥ 1/2m. It gives us an algorithm with only O(2m/2) queries.
Comparing to a classical algorithm, it is a quadratic speedup.

Another example is collision finding: find x0 6= x1 such that g(x0) = g(x1). It is not
harder than preimage search. For simplicity, let us assume g has range size N and is a
2-to-1 function such that for every g(x), it has exactly two pre-images in its domain.
We can randomly choose x, compute g(x) and find x′ such that g(x) = g(x′). Because
every image has exactly two pre-images, this algorithm gives a valid pair of collisions
with probability 1/2. This problem is indeed easier than pre-image search. Classically,
we can use ‘birthday algorithm’. The classical algorithm basically does the following:
run g on k random inputs, and look for a collision. Here we set k = N1/2. Because
the probability of having no collision after k queries is

∏k−1
i=0 (1− i/N) = O(e−k

2/N).

But with quantum computers, one can reduce the query complexity to be O(N1/3).
The algorithm is an application of Grover’s algorithm: We can run g on a bunch of

1



inputs and collect them together as a database D = {(xi, yi = g(xi))}. And then we
set up a search problem (set up a function f) such that f(x) = 1 if and only if g(x)
collides with one of the values in the database (make sure pre-images do not collide).
In other words,

f(x) =

{
1 if g(x) = yi and x 6= xi for some xi ∈ D
0 otherwise

Assuming g is a 2-to-1 function, δ = 2k/N . So the total number of queries is k +
(N/2k)1/2 (k is the number of queries to prepare the database D and the second
term is the queries made by Grover’s algorithm ) which takes its minimum when
k = O(N1/3).

pre-image search collision finding
classical algorithm Θ(N) Θ(N1/2)
quantum algorithm Θ(N1/2) Θ(N1/3)

Table 1: query complexity comparison (they are all tight)

Now we are going to see other areas where quantum algorithms really shine.

2 Shor’s algorithm: Part 1

2.1 Background

Let us start with factoring with integers. N = pq where p and q are two large primes.
Suppose that 3 does not divide p− 1 or q− 1 (we can also handle the case when it is
not true, but for this toy example, let us only deal with 3). It turns out that there
exists d such that x3d = x (mod N) (in other words, d−1 = 3 (mod φ(N))). And
moreover if p and q are known, we can efficiently compute d (by extended gcd). In
the other hand, if we don’t know the factor p and q, you can not compute d (knowing
d⇒ computing p and q).

Here is a possible application (of factoring): Assume Alice and Bob are in an insecure
channel which an adversary Eve is listening to. Alice wants to share a secret message
with Bob without letting Eve knowing it.

Bob chooses random large primes p and q, computesN = pq, and d = 3−1 (mod φ(N)).
And he sends N to Alice. Alice has some message x. She computes c = x3 (mod N)
and sends c to Bob. Eve gets both N and c. If we assume computing cube root
is hard in this case, then Eve can not recover x. But we know that Bob actually
can: cd = x3d = x (mod N). This kind of ideas are roughly known as public key
encryption scheme.

2



But with an algorithm that allows you to factor, the scheme is broken. Given N ,
Eve can compute p and q which allow him to compute φ(N) = (p − 1)(q − 1). By
knowing φ(N), computing 3−1 mod φ(N) just requires solving the following equation
3x+ φ(N)y = 1 which is solvable by extended gcd algorithm.

With quantum computers, we can factor N efficiently (taking time polynomial in the
number of bits, or logN).

2.2 Quantum algorithm

First, we observe that there are exactly four square roots of 1 mod N . Using Chinse
Remainder Theorem, they are (1, 1), (−1,−1) mod (p, q), (−1, 1), (1,−1) (two non
trivial roots). Second, finding non trivial roots actually implies factoring. Assume we
know x− 1 = 0 (mod p) and x− 1 = −2 6= 0 (mod q). So gcd(x− 1, N) = p.

If we choose random a in ZN and gcd(a,N) = 1, then there exists an r > 0 such
that ar mod N = 1. Let r be the smallest positive integer and it is called the period
of a mod N . Suppose r is even, then ar/2 is a square root of 1 (indeed −1). It can
be also shown that for random a, r is even and ar/2 is non trivial with reasonable
probability.

Our goal now is given a, to compute this r. We rephrase the problem: fa(x) =
ax mod N and we know that there exists an r > 0 such that fa(r) = 1, and also
we know that fa(x + r) = ax+r mod N = ax mod N = fa(x) which is a periodic
function with period r; we are going to find the period of a periodic function. Recall
last week, we have Simon’s problem where f : {0, 1}n → {0, 1}m given the promise
f(x⊕ r) = f(x) and the goal is to find r. They look similar. Here are the idea of the
algorithm which is roughly the similar idea for Simon’s problem:

1. create the uniform superposition of inputs:

1√
φ(N)

φ(N)−1∑
x=0

|x〉

(But we dont know what is φ(N). We will revisit how to do this in the next
lecture.)

2. Evaluate fa on the superposition and get

1√
φ(N)

φ(N)−1∑
x=0

|x, fa(x)〉 =
1√
φ(N)

φ(N)−1∑
x=0

|x, ax mod N〉

3. Measure fa(x) registers and we will get y, assume x0 is the smallest positive

3



input such that fa(x0) = 1, then the remaining state is

1√
φ(N)/r

φ(N)/r−1∑
i=0

|x0 + ir, y〉

4. Apply QFT to all ’x’ registers:

What is QFTM? takes a state
∑M−1

x=0 ax|x〉, and outputs 1
M1/2

∑
y

∑
x axω

xy
M |y〉

where ωM = e2πi/M . We will see more about QFT in the next lecture.

Applying QFT, we will get

1

φ(N)/
√
r

∑
y

|y〉
∑
l

w
(x0+rl)y
M =

1

φ(N)/
√
r

∑
y

|y〉wx0yM

∑
l

wrylM

=
1√
r

∑
y,y=0 (mod φ(N)/r)

ωx0yM |y〉

5. Measure the register and get φ(N)/r · k for some random k. Collect a bunch of
them and apply gcd to recover φ(N)/r.

There are some problems with this algorithm. First is that we do not know φ(N) so
we can not even prepare a superposition of all inputs or recover r. We do know QFT2

is Hadamard gate. But the second problem is how to implement QFTM when M > 2.
We will resolve this two problems in the next lecture.

4


	Pre-image search and collision finding
	Shor's algorithm: Part 1
	Background
	Quantum algorithm


