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Notes for Lecture 20

1 Authenticating Quantum States

Today we’re going to talk about authenticating quantum states. Suppose Alice and
Bob have a shared classical key k, and Alice wants to send a (mixed) state ρ to Bob,
but there’s an adversary who can modify ρ to be ρ′. In the classical setting we solved
this with a message authentication code, but in the quantum setting it turns out that
just appending a tag doesn’t work here.

1.1 Authentication Implies Encryption

But first we’ll show that quantum authentication implies encryption. Suppose we
have some procedure Auth(k, ρ)→ ρ̂. Suppose it’s possible to distinguish Auth(k, |0〉)
from Auth(k, |1〉), and that I can distinguish perfectly (but it turns out we can make
this work without assuming perfect distinguishing). Note that I’m using orthogonal
states, but we can actually make this work even without orthogonal states.
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In other words, using the distinguisher we were able to form an authentication of one
state to an authentication of another state.

So what does the fact that authentication implies encryption mean? It actually causes
us a lot of problems. In particular it means that I can’t sign a state by just appending
a header. So any quantum authentication that I want to authenticate has to be secret.

So how should I define security? One issue is that states are a continuous quantity
instead of a discrete quantity as they are in the classical setting, so how do we detect
an extremely small perturbation to the quantum state? And how do we formalize
what it means for the adversary to produce a different authenticated state?

1.2 Security Definition

There have been a few attempts in the literature. What seems to be the best one is
based on the following. Let’s first ask: What can an adversary trivially do?

The adversary can do nothing, they can drop the message, they can do an extremely
small perturbation. The adversary can measure the first qubit. Since this only has
two outcomes, the probability Bob accepts is still at least 1/2, but the state that’s
being sent over has clearly been tampered with. This is actually a more general
principal that if you do a measurement that only has 1 of 2 outcomes, you can only
decrease the probability of something happening later by a 1/2 factor. There are ways
to protect against these measuring attacks, but there’s nothing we can do to prevent
the adversary from deciding whether or not they want to forward the message along.

The intuition for the security definition is that the only adversaries that exist are
these “ideal” adversaries considered above.

Let’s try to make this a bit more rigorous. I’m going to allow mixed quantum states
to have trace ≤ 1. This corresponds to the adversary sending nothing. A trace of 0
corresponds to the adversary sending nothing, and a trace of ρ is just the probability
ρ exists at all.

So the syntax for quantum authentication is

• Auth(k, ρ)→ ρ̂. We’ll have Tr[ρ] = Tr[ρ̂].

• Ver(k, ρ̂)→ ρ. Here we might have an abort, so we mean that Tr[ρ] ≤ Tr[ρ̂].

So correctness says that Ver(k,Auth(k, ρ)) ≈ ρ.

For security, we’ll first defineI to be a set of ideal adversaries. In particular,

I = {ρ→ cρ for 0 ≤ c ≤ 1}.

So what we mean is that the adversary can only scale the whole density matrix down,
but it can’t vary any components individually.
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We’ll say a scheme is ε-secure if for any real adversary A, ∃I ∈ I such that ∀ρ,

1

|K|
∑
k

Ver(k,A(Auth(k, ρ))) ≈ε
1

|K|
∑
k

Ver(k, I(Auth(k, ρ)))

So in particular I pick a random key k, and then the result of the adversary is ε-close
to the result of the ideal adversary.

Consider, for example, the adversary A that measures the first qubit. Sometimes
this adversary will still pass verification and sometimes it will not. And we can have
an ideal adversary that simply forwards along the original message so that it gets
accepted with the same probability A gets accepted. What this definition means is
that the adversary that measures first qubit might as well have not measured the first
qubit, but could have aborted with some probability and just forwarded the state.
So we can think of the verification that accepts as “correcting” the state.

So why can’t we insist on equality? I can just try to guess a random key k, which
will allow me to perform a successful mauling (and clearly this can’t be simulated by
the ideal adversary).

So what does it mean for ρ ≈ε ρ′? We mean that |ρ− ρ1| ≤ ε where we’re taking the
trace norm, which corresponds to

∑
i |λi|. A fact is that ρ ≈ε ρ′ iff ∃ an adversary

that can distinguish with probability ε. Note that this corresponds to the classical
notion of statistical distance.

1.3 Constructions

There’s actually a few constructions out there. Here’s one.

• The key is a random unitary U .

• Auth(U, ρ): apply U to ρ⊗ |0n〉〈0n|. The classical analogue of this would be to
append your message with some 0’s and then apply a random permutation. This
authenticates because the adversary doesn’t know the random permutation, so
if they change to anything else, they won’t get something with a bunch of 0’s
at the end. It turns out this works in the quantum setting as well.

• Ver(U, ˆrho) : Apply U † to ρ̂ and measure the last n bits. If the last n bits are
not 0n, reject, and otherwise output ρ (i.e. first few bits).

Efficient: Unitary 2-design, which is the quantum analogue of pairwise independent
functions.

Here’s another construction

• First apply classical authentication in superposition.
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• Then apply the QFT.

• Then apply classical authentication in superposition.

The classical authentication scheme needs to satisfy certain strong security properties
for this transformation to work. Essentially, authenticating in the computational
basis and the fourier basis turns out to be enough, despite the fact that a classical
authentication scheme is not enough.

The idea for this scheme comes from the impossibility result, which said that if I can
authenticate 1√

2
|0〉 + 1√

2
|1〉 and 1√

2
|0〉 − 1√

2
|1〉, this implies encryption of |0〉, |1〉. So

this is really authenticating H|0〉 and H|1〉. So authenticating in the Hadamard basis
is encrypting in the computational (and vice versa), so to encrypt the entire state I
just need to authenticate in both bases.

Next week we’ll look at some ways to strengthen the security definition. In the classi-
cal setting if we want to authenticate or encrypt an unbounded number of messages,
we always need computational assumptions. Remarkably, in the quantum setting it
turns out you can start recycling your key information theoretically.
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