
COS 597A: Quantum Cryptography Princeton University
Lecture 15 (November 7, 2018)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 15

1 Quantum Security of GGM

(continued from last lecture)

1.1 Classical GGM Proof Recap

In Hybrid 0 you get oracle access to the function PRF (k, ·). In Hybrid n you get
access to a truly random function. Generally, for Hybrid i, you remove the first i
layers of the tree and you replace that with random.

If an adversary breaks security of the PRF with some noticeable probability, there
must exist i such that the adversary distinguishes Hybrid i from Hybrid i + 1 by
the triangle inequality. We notice that the adversary can simulate the rest of the
layers for itself since they are the same between the two hybrids, so what it’s really
doing is distinguishing based solely on the switch from PRGs to random in the ith
layer.

1.2 Oracle Security

We define the following “oracle security game” where an adversary can send queries
x to a challenger. The challenger holds a secret bit b, and responds with random
H(x) if b = 0, or with G(R(x)) where R is a random function. So what we have is
an adversary that breaks oracle security of the PRG. We define the game so that the
adversary is free to make polynomially many queries.

What we want is that standard PRG security of G implies oracle security. Here’s a
proof of this in the classical setting.

Proof: Suppose A makes q queries in the oracle security game. We come up with
an adversary B that distinguishes q PRG samples from random (recall that standard
PRG security only asks that we distinguish one PRG sample from random). All B
has to do to simulate the view of the oracle security challenger for A is to forward its
ith sample as the response to A’s ith oracle query. This simulates A’s view perfectly,
provided that A only makes distinct oracle queries (otherwise it can answer for itself).
So it remains to show that given an adversary B that distinguishes q PRG samples

1

from random, we come up with an adversary C that distinguishes based on just 1
sample. This last step follows from a hybrid argument.

Which part of this proof breaks when we move to the quantum setting? The difference
is that now, the adversary to the oracle security game gets to make quantum queries
of the form

∑
αx,y|x, y〉 and gets the response

∑
αx,y|x,H(x)⊕ y〉.

Essentially, all the steps are unchanged except for the step that goes from saying an
adversary for oracle queries implies an adversary that distinguishes q PRG samples
from random. This step is no longer valid in the quantum setting, since an adversary
B that receives q samples cannot simply construct a valid quantum oracle response.

1.3 Fixing the Reduction

So what’s the solution? It turns out that we already saw the technique to fix this.
Remember in the signature setting we were able to replace a random oracle H(x) with
a composition of two random oracles I(J(x)) where J : χ→ [r] and I : [r]→ γ, and
the point was that r was quite small. We proved a theorem that H is indistinguishable
from random except with probability O(q3/r).

Suppose A breaks the oracle security with advantage ε. We define the following
sequence of hybrids.

• Hybrid 0 This is the oracle security game in the random case (b = 0), where
the adversary receives responses

∑
αx,y|x,H(x)⊕ y〉 for truly random H.

• Hybrid 1 Same as before, except now H(x) = I(J(x)) for random I and J .

• Hybrid 2 Same as before, except now H(x) = G(I ′(J(x)).

• Hybrid 3 Same as before, except now H(x) = G(R(x)) (i.e. the b = 1 case of
the oracle security game)

Hybrid 0 is indistinguishable from Hybrid 1 except with probability q3/r.

Also, Hybrid 2 is indistinguishable from Hybrid 3 except with probability q3/r,
since we notice it’s essentially the same distinguishing problem (with G applied to it,
but this cannot possibly increase the distinguishing advantage).

What we conclude is that Hybrid 1 and Hybrid 2 must be at least ε − O(q3/r)
due to the triangle inequality. So we’re breaking oracle security for I versus G ◦ I ′.
I corresponds to the random case, and then G ◦ I ′ is the PRG applied to random I ′

(note that I ′ has shorter output since it’s outputting the seed for G).

At first it might look like this hasn’t bought us anything, since we’ve used an oracle
adversary to output another oracle adversary. However, the point is that I and G◦ I ′

2

have small domain, namely [r], so now I can have an adversary that queries the entire
domain. This allows me to make the reduction work and break the PRG for r samples;
note that since r is polynomial I can turn this into an adversary for 1 sample.

Note that in the real reduction, we need to replace the I and I ′ with 2q-wise inde-
pendent functions because we need to be able to simulate them efficiently.

2 Quantum Money

Now we’ll switch tracks entirely and consider settings where the honest party also has
a quantum computer. One thing that becomes possible is quantum money.

2.1 Quantum Money Basics

As an exercise, let’s think about what features we want out of our currency. One of
the most important properties is that once I give currency to a merchant, I shouldn’t
be able to go and spend that bill again.

In the classical digital setting, how do I prevent copying of a string of 0’s and 1’s?
The only way more or less is to have the mint involved in every transaction. Note
that blockchains are really just make the mint distributed, but don’t remove them
from the equation.

But in the quantum setting, no cloning prevents copying of states. So the idea is that
our currency will just be an unknown quantum state, and by no cloning I won’t be
able to copy it. The way to think about this is that no cloning is really equivalent to
quantum money, which is an observation by Weisner in the 60’s.

The most basic quantum money algorithm is going to be the following. Imagine we
have a mint that only produces a single banknote. The banknote is just going to be
a single random choice from the set {|0〉, |1〉, |+〉, |−〉}:

3

The serial number will just be a 2-bit classical description specifying which one of the
four states it is.

There is a mint that produces a quantum state |ψ〉 and sends it to an adversary A.
A will try to come up with two copies |ψ0〉, |ψ1〉 of the quantum states and send them
to two merchants M0,M1. Then each merchant checks with the mint to see whether
or not the note is valid:

How does the merchant know if the banknote is valid? The merchant will have a ver-
ification procedure Ver(σ, |ψ〉) where σ is the serial number specifying the banknote.
It simply performs a measurement to check if |ψ〉 is the right state. If σ ∈ {0, 1},
then I measure in the standard basis and check if the result matches. So there is
always some constant probability that I will reject a state that is not the correct one
specified by the serial number. If σ ∈ {+,−}, then I apply Hadamard first before
measuring.

Theorem: The probability that the mint accepts both |ψ0〉 and |ψ1〉 is some constnat
c < 1.

The actual banknote is n qubits, so now I have at most a cn (exponentially small)
chance of forging. So we can give out more bank notes by just recording the serial
numbers along with id’s for each banknote. Furthermore, we can avoid storing a large
table by using a PRF to generate the σ’s using a secret key k.

We then need the mint to be online, and also for there to be a quantum channel
between the merchant and the mint.

Another problem is that the verification oracle allows you to break. The idea is that

4

if you have a bank note, you can toggle the bits one by one using the verification
oracle to learn the underlying σ.

2.2 Public-Key Quantum Money

Notice that these two problems stem from the fact that the serial number is secret,
and therefore we need the mint to verify. What this brings us to is public key quantum
money.

This is a scheme where I can actually maintain security even though the serial number
is public. The syntax is as follows:

• Gen()→ σ, |ψ〉

• Ver(σ, |ψ〉)→ 0/1.

The definition of security is that if I get a banknote with a serial number, I shouldn’t
be able to forge another bank note with the same serial number.

So the mint will generate a σ, |ψ〉 and send this banknote to the adversary. Then the
mint will broadcast σ, and the merchant can simply use this to run Ver:

I can solve the problem of having to verify with the bank list of serial numbers each
time by simply using a classical signature scheme to sign the serial number. Now a
bill also contains a signature τ along with |ψ〉, σ, τ .

So an adversary that tries to make new money will have to either

• increase their supply of serial numbers, which violates signatures security (be-
cause this is a forgery)

5

• create two quantum states for the same serial number, which violates one note
security.

In much of the literature on quantum money, this one-bank-note scheme is called a
mini scheme.

6

	Quantum Security of GGM
	Classical GGM Proof Recap
	Oracle Security
	Fixing the Reduction

	Quantum Money
	Quantum Money Basics
	Public-Key Quantum Money

