
COS 597A: Quantum Cryptography Princeton University
Lecture 14 (Nov 5, 2018)
Lecturer: Mark Zhandry Scribe: Jiaxin Guan

Notes for Lecture 14

1 Motivation

Consider a signature scheme described by the game illustrated in figure 1.

Adv. Ch.pk

m

m*, σ*

σ

Figure 1: The challenger first sends public key pk to the adversary. The adversary
then sends message m, and gets the signature σ back. At the end of the experiment,
the goal of the adversary is to come up with a forgery m∗, σ∗ such that m∗ 6= m, and
σ∗ is a valid signature on m∗.

Remember when we talked about the random oracle model, assume there is a signa-
ture scheme that uses a hash function which we cannot prove any security properties
like collision resistance about. Instead, we can model the hash function as a truly ran-
dom function, and, in addition, give the adversary oracle access to the truly random
function. The game thus becomes the one illustrated in figure 2.

Notice that the challenger now also behaves as an oracle for the truly random function.

We talked about the case where we make the random oracle queries quantum queries,
as shown in figure 3.

So now a natural question lies: what if we also switch the signature queries to quantum
queries?

1

Adv. Ch.pk

m

m*, σ*

σ

x

H(x)

x

H(x)

Figure 2: In addition to the orignal communication, the adversary can now repeatedly
submit queries x to the challenger, and the challenger would respond with the truly
random function H evaluated on x.

Adv. Ch.pk

m

m*, σ*

σ

Σαx,y|x, y>

Σαx,y|x, y⊕H(x)>

Σαx,y|x, y>

Σαx,y|x, y⊕H(x)>

Figure 3: Instead of submitting classical queries x, the adversary now sends super-
positions over all inputs

∑
αx,y|x, y〉, and receives as responses superpositions of the

outputs
∑
αx,y|x, y ⊕H(x)〉.

Notice that the reason that we make the random oracle queries into quantum queries
is because in real life, the adversary knows the code of the hash function. They can
thus implement Grover’s algorithm, collision finding, etc., i.e. they can interact with
the random oracle in a quantum way.

However, for the signature query, it’s different: Say Alice is sending a message m and
a signature σ to Bob. Here we don’t need to worry about quantum queries because

2

the query corresponds to the message m that Alice sends. And in a classical setting,
Alice is also the one generating the message m. There is no reason for Alice to make
that a quantum query. Therefore, it’s often times sufficient to make random oracle
queries quantum, but other queries remaining classical.

Nevertheless, one can be paranoid and be worried that the above claim isn’t true.
Suppose one have a quantum computer that gets stolen. Then someone could interact
with the quantum computer in superposition. Maybe there is some concern here if
the adversary is interacting with the quantum computer in superposition.

Another reason to worry about this is that classical crypto can be the building block
for quantum protocols. If a scheme is only secure in a classical sense, we cannot use
it in the construction of a larger quantum protocol.

One intuitive way is to measure before sending the output. Let’s assume that the
adversary is somehow able to bypass the measurement step. Actually, measurement
could be trickier than we expect. In some sense a measurement is actually entangling
with the environment / observer. If the device is to measure what comes in, it is
essentially entangling it with the input, and that requires storage. Or if it’s entangling
with the environment, the adversary could also potentially control the environment.
So we will assume that no measurement is allowed.

2 Message Authentication Code (MAC)

We will take a look at one-time MACs.

A MAC consists of two algorithm, Mac(k,m), and Ver(k,m, σ). It looks a lot like a
signature scheme, except that there is no distinct signing key and verification key -
there is just one secret key used for both.

Correctness states that for σ ← Mac(k,m), Ver(k,m, σ) outputs 1.

Security is defined below by the game in figure 4.

Classically MACs are very easy to construct: k would be the description of a pairwise
independent function. Concretely, let m ∈ Zp, k = (a, b) ∈ Zp where a and b are
randomly chosen, then we have Mac((a, b),m) = am+b. To verify, we simply compute
the MAC again and check for equality. Why is this secure for classical queries? See
homework 2.

Now also recall from homework that this is not secure if quantum queries are used -
one can recover the key, as shown in homework 2. This is what we will try to solve.

The idea is to make the key large enough that as the adversary only learns two values
mod p in superposition, there is not enough information in the response from the
challenger to encode the whole key. Even if the adversary cannot learn the whole key,
there is still a problem - it’s not clear what the definition of security should be.

3

Adv. Ch.

m

m*, σ*

σ

Figure 4: The adversary wins if m∗ 6= m and Ver(k,m∗, σ∗) = 1

Classically, the adversary wins if m∗ 6= m, and Ver(k,m∗, σ∗) = 1. But in a quantum
setting, there is no m! All we have is a superposition of m. For exmaple, what an
adversary can always do is to first send a superposition of all messages, and measure
the response from the challenger. The forgery is now a single message while the
original query is a superposition over all messages. These are obviously not equal,
but obtaining such a forgery is a trivial thing that an adversary can always do. Thus
here defining a forgery is not immediately obvious.

One option is that the adversary commits to m∗ first before the quantum queries.
But that’s something along the lines of selective security. We want the adversary to
be able to choose m∗ at the very end.

Here is how we would modify the game, as shown below in figure 5.

The main idea is that the adversary will now provide two messages together with
signatures, instead of a single one. (Notice that we can also extend this definition to
allow the adversary to send q queries instead of 1. Consequently, the adversary need
to submit q+1 message/MAC pairs at the end of the game, as illustrated in figure 6.)

Notice that if we change the queries back to classical, these two games are actually
equivalent. The adversary for the latter game can just provide both m and m∗ at the
very end.

There is still weakness in the definition. We will not talk about the ”right” definition
today. It’s complicated and might be good final project topic.

Here is an intuition of the issue. Suppose the adversary A gets a superposition of
inputs that all starts with ”To Alice”. Maybe there is some weird way that one can
perform some operation on the superposition to get an input that start with ”To
Bob”. Notice that this does not fulfill definition 1, as here the adversary only has

4

Adv. Ch.

m0, m1, σ0, σ1

Σαm,y|m, y>

Σαm,y|m, y⊕σ>

Figure 5: (Boneh-Zhandry ’13) The adversary wins if m0 6= m1 and Ver(k,mb, σb) = 1
for b ∈ {0, 1}.

Adv. Ch.

m0, m1, ..., mq, σ0, σ1, ..., σq

Σαm,y|m, y>

Σαm,y|m, y⊕σ>q

Figure 6: The adversary wins if m0, m1, . . . ,mq are all distinct, and that
Ver(k,mi, σi) = 1 for i = 0, 1, . . . , q.

one forgery. However, this makes sense in the old definition, as the forgery that the
adversary outputs looks nothing like the original messages in superposition.

3 Construction

We will first take a look at the classical construction of MACs, and just hope that it
works as well in the quantum setting.

5

Classically, MACs can be constructed using Pseudorandom Functions (PRFs).

Definition 1 (Pseudorandom Function). A Pseudorandom Function is a determinis-
tic function F : K×M→ Y. It takes as input the key k ∈ K, a message m ∈M, and
outputs y = F (k,m) ∈ Y. If k is known, the function F should be easy to compute.
Otherwise, the function should look like a truly random function.

And here is the security definition for a PRF using the security game in figure 7.

Adv. Ch.

m

y

b∈{0,1}

b=0: y=F(k,m)

 for random k

b=1: y=H(m)

 for uniformly

 random function

 H

b'

Figure 7: The adversary wins if b′ = b. (Notice that H and k remain the same
throughout the experiment.)

Definition 2 (PRF Security). F is (t, q, ε)-secure if ∀A running in time ≤ t and ≤ q
queries,

|Pr[b = b′]− 1

2
| ≤ ε.

Theorem 3. (Classical Result) If F is a (t, q + 1, ε)-secure PRF and range has size
N , then F is a (t, q, ε+ 1

N
)-secure MAC.

Here is an intuition for the proof of this theorem: if the function F is uniformly
random, then clearly the adversary cannot forge a MAC on a new message. Because
the adversary haven’t seen the value for the new message, so all the adversary can do
is to make a random guess. By security, it is indistinguishable from the case where
we have an instance of a PRF instead of the uniformly random function with a loss
on the forging probability.

Our idea is to use PRF security to switch to Oracle Interrogation.

6

Adv. H

m0, m1, ..., mq

m

H(m)q

H(m0), H(m1), ..., H(mq)

Figure 8: In oracle interrogation, the adversary will be interacting with a random
oracle H. The adversary queries the orcale q times and gets back H(m) for each
query m. At the end of the game, the adversary is required to output m0, . . . ,mq

together with H(m0), . . . , H(mq). The adversary wins if all m0, . . . ,mq are distinct.

Definition 4 (Orcale Interrogation). See figure 8.

Classically, this is hard, because H is uniformly random, and given q queries, if the
adversary is outputting q+ 1 points from the function, then at least one of the points
must be something that the adversary has received before, and the adversary has no
information about it so he cannot do better than a random guess. The question is
what happens for quantum? Two things go wrong:

1. The queries for a challenger here are quantum. If we are trying to translate to
the oracle interrogation problem, we need to consider quantum oracle interro-
gation.

2. The other part of the the proof when we switch from MAC forging to Orcale
Interrogation is based on PRF security. But we only consinder F secure in a
classical setting. Thus we need a quantum-secure PRF.

4 Quantum Oracle Interrogation

In a quantum setting, the adversaries ”see” all inputs. They can submit a superpo-
sition of all inputs. They are learning information about every input of the function.
These inputs are hidden beneath the quantum state so the adversaries can’t access
them right away. The same argument in the classical setting won’t apply, since the
adversaries could have information about every one of m0,. . . ,mq.

7

Theorem 5 (von Dom ’98). If H : {0, 1}n → {0, 1}, given q quantum queries, a
quantum adversary can get ≈ 2q input/output pairs.

Here the question lies: Is this only applicable because the range is small, or can this
theorem be extended to all functions?

Theorem 6. If H : {0, 1}n → [N], the adversary wins Quantum Oracle Interrogation
with probability at most q

N
.

5 Quantum-Secure PRFs

Adv. Ch.

y

b∈{0,1}

b=0: y←G(x)

 for random x

b=1: y uniformly

 random from Y

b'

Figure 9: The adversary wins if b′ = b.

Definition 7 (Pseudo-Random Generator). A pseudo-random generator (PRG) G :
X → Y with |Y | >> |X| is (t, ε)-secure if for all adversary A for the game illustrated
in figure 9 running in time ≤ t,

|Pr[b = b′]− 1

2
| ≤ ε.

Theorem 8 (GGM ’84). PRGs can be used to construct PRFs.

Before we jump to the construction, let us take a look at the PRF.

Let’s assume that the domain of the PRF is small, so small that one can query the
entire domain. If one can query the entire domain, then the adversary can construct

8

the truth table for the function that he is interacting with. The point is that this
truth table is either generated by a PRF, or it’s a truly random truth table. Thus,
in some sense, we can view the PRF as a PRG, which simply evaluates the function
F on all inputs and concatenates all the outputs together. So in this case, either the
truth table represents one function from the sparse sets of functions, or one that is
uniformly random.

Normally, we think of PRFs having relatively large domains. Thus, the truth tables
are exponentially big that one cannot learn the whole thing. But the intuition is that
PRFs are just very large PRGs.

Here is what we do to use PRG to build a PRF. We repeatedly expand the input
using PRGs (assuming that the PRG doubles the input length), as shown in figure 10.

G

G G

G GGG

G G G G G G G G

Figure 10: PRF construction from PRG.

The idea is that we’re going to do this so many times n. Now the output is 2n length
and one cannot write it down. But if asked for a specific bit, one can easily compute
this. One just need to follow down the path from the root of the PRG tree.

Let’s say we want to build a PRF F : K×{0, 1}n → Y and that we can write G(x) as
(G0(x), G1(x)). To evaluate F (k, x), we simply compute Gxn(. . . Gx2(Gx1(k))) where
x1x2 . . . xn is the bit representation of x.

Classically, this is proved using a hybrid argument. We define the following hybrids:

H0 : F (k, x)

Hi : Gxn(. . . Gxi+1
(H(x1 . . . xi)))

and

9

Hn : H(x)

where H is a random function. The hybrid argument uses the fact that by triangle
inequality, there must be two adjacent hybrids that the adversay should be able to
distinguish. We will discuss this further in the next lecture.

10

	Motivation
	Message Authentication Code (MAC)
	Construction
	Quantum Oracle Interrogation
	Quantum-Secure PRFs

