
COS 597A: Quantum Cryptography Princeton University
Lecture 12 (November, 2018)
Lecturer: Mark Zhandry Scribe: Kevin Liu

Notes for Lecture 12

Let us pick up what we left off. In the last time, we are looking at random oracle
model. For some application, we do not know how to prove the security under random
oracle model in the quantum setting. One example is digital signature.

Let us recap what is digital signature scheme. There are three polynomial algorithms:

• Gen takes a security parameter 1λ and outputs a public key pk and a private
key sk;

• Sign takes a private key sk and a message m, it outputs a signature σ;

• Ver takes a public key pk, a message m and its signature σ, it outputs 0/1.

The correctness of a signature scheme is defined as follows: for any message m,

Pr
[
Ver(pk,m, σ) = 1

∣∣∣(pk,sk)←Gen(1λ)
σ←Sign(sk,m)

]
= 1

We say the digital signature scheme is (t, q, ε)-secure if for every adversary A with
running time at most t, A making at most q queries wins the following game with
probability at most ε.

1. The challenger generates (pk, sk) ← Gen(1λ) and it broadcasts the public key
pk;

2. A sends message mi to the challenger and gets the signature σi = Sign(sk,mi);

3. Finally it is the challenge stage where A comes up with a pair of m∗, σ∗ such
that m∗ is not in {mi}qi=1. The result of this game is Ver(pk,m∗, σ∗).

We will first see how to build a signature in the classic world and see what is going
to be wrong in the quantum world and how to solve the problem.

1 Digital Signature in the classic world

One of the building blocks in cryptography is Trapdoor Permutation (TDP).

1



• It is going to have a Gen algorithm which produces a pair of keys pk, sk;

• A keyed function f(pk, ·) where the first input is to determine the function and
the second input is the “true” input of the function fpk(·) = f(pk, ·)

• An inverse function which takes sk, allows you to go backward: f−1(sk, f(pk, x)) =
x for all pk, sk and x.

We can think of the function as a permutation which maps n-bit strings to n-bit
strings. For security, we have the following, we say it is (t, ε)-secure if for any adversary
A with running time at most t,

Pr[f(pk,A(pk, y)) = y] ≤ ε

The randomness is taken over Gen and the uniform choice of y In other words, an
adversary does not have too much advantage to invert f(pk, .) if it only knows pk.
We know how to build it from factoring but it failed as we know Shor’s algorithm
breaks it.

Here is a really simple scheme built from trapdoor permutation.

• Sign(sk,m) = f−1(sk,m);

• Ver(pk,m, σ) = [f(pk, σ) = m];

This scheme seems to work according to the security of TDP. But there is an attack
that one can simply choose any σ and compute m = f(pk, σ).

An easy modification can makes it work, by introducing a hash functionH: Sign(sk,m) =
f−1(sk, H(m)).

But we do not know how to prove it. This is where the ROM methodology comes in.
If we teat H as a random oracle, we can prove the scheme works.

Easy case

Let us consider an easy case where no signing query appears in the security game.
Here is the game:

1. The challenger generates (pk, sk) ← Gen(1λ) and it broadcasts the public key
pk;

2. A can only make oracle queries: it sends m and receives H(m);

3. Finally it is the challenge stage where A comes up with a pair of m∗, σ∗ such
that m∗ is not in {mi}qi=1. The result of this game is Ver(pk,m∗, σ∗).

2



The adversary only gets pk and can make polynomial number of oracle queries. Finally
A should forge a valid pair of message and signature. Assume there is an A that
breaks the security game. We can build an adversary B that breaks TDP using A as
a subroutine.

• Upon B gets pk and y, B gives pk to A (B plays the role of the challenger in
A’s game);

• If B gets the challenge query (m∗, σ∗), B can use the pair as finding a pre-image
of TDP f(pk, ·) (will see later);

• How about random oracle queries? What B is going to do? B is going to
simulate A on the fly. Every time B gets an oracle query m from A, B simulates
a random oracle: keep an input/output table, if m is in the table, output the
corresponding r; otherwise choose a random r, add (m, r) to the table and
return r.

Assume m∗ is also an oracle query at the very beginning, we can put (m∗, y) in the
table. Because y is random, from A’s view, this is identical to the case where y is
chosen uniformly at random. So σ∗ returned by A at the challenger stage is indeed a
pre-image of y.

But what if we do not know when m∗ is asked (or even m∗ is never asked). We can
argue that if m∗ is never asked, the probability of guess H(m∗) right is negligible. We
then randomly guess the i-th query is m∗. So the probability of breaking TDP is ε/t.

Hard case

In this case, we allow an adversary to make signing queries. r in the database is now
not generated as a random string, but we generate random s first, and let r = f(pk, s).
From A’s view, they are identical. If A is making a signing query, B can respond
with s instead of r.

With ROM, we can

1. know what A is doing with the hash function H;

2. know how to embed y into A’s game. We somehow ‘program’ y into H which
A interacts with.

So with the simulated random oracle, we can still answer oracle queries. Moreover,
we can answer signing queries and program the random oracle such that it outputs y
on x∗. The previous proof still works with the probability of breaking TDP is ε/t.

3



2 Digital Signature in the quantum world

Now let us switch to quantum world. A is still getting pk from the challenger. Now
because the adversary has the function H, the only way to model that correctly is to
allow the adversary to query on superposition. Because an adversary can always get
the code ofH and implement it as a quantum gate. So we should treatH as a quantum
oracle. That is ifA sends an oracle query

∑
x,z αx,z|x, z〉, it gets

∑
x,z αx,z|x, z⊕H(x)〉.

It seems hard to simulate it on the fly.

In the classic setting, we can maintain an input/output table that each entry is
chosen uniformly and consistent. But in the quantum world, we have two problems.
Considering the oracle query is

∑
x |x, 0〉, the resulting state is

∑
x |x,H(x)〉 which

requires knowing every value of H. If we still keep the database, we need to write
down every value of the oracle. And also, it is hard to insert y into a random query
point. The success probability is negligible (if we follow the proof for classic setting).

The first problem seems not super hard. If A makes t queries to H, the followings
are indistinguishable (refers to the readings):

• H is a random function;

• H is a 2t-wise independent function;

We say H is k-wise independent function if for any distinct x1 · · ·xk and all y1 · · · yk,
Pr[H(xi) = yi ∀i] = (1/2n)k. In other words, if we only look at k inputs of the
function, the output is uniformly at random.

They are easy to construct, here is one example: if H is defined on Zp → Zp, we can

define H(x) =
∑k−1

i=0 aix
i for random a0, · · · , ak−1. So to write down the polynomial,

it is only required to write down H from a 2t-wise independent function family which
solves the first problem.

The second problem: We need to somehow come up with an H that embed y into
H and the adversary touches y with high probability. We choose a parameter `,
choose P : M → [`] and Q : [`] → {0, 1}n be both random function and let H(m) =
Q(P (m)). We want Q ◦ P is approximation of a random function M → {0, 1}n.

Classically it is true. We can not distinguish unless find collision for P . The probabil-
ity of finding a collision is bounded by O(t2/`) so by choosing modestly big `, we will
make the probability small. And then we can embed y into Q. And the probability
of the challenge query corresponding to y will be divided by `.

• P : t-wise independent random function (2t for quantum);

• Q: random function from [`] to {0, 1}n but choose a random i and make that
entry be y, other entries be f(pk, s) (choose s randomly and compute f(pk, s)).

4



Probability of B succeeding relies on the following: (1)A succeeds, (2)A distinguishes
the small range distribution, (3) we guess the index i correctly;

Pr[succeeds] ≥ (ε− t2/`)/`

To maximize the probability, choose ` to be t2/(2ε) where the probability is ε2/(4t2).

5


	Digital Signature in the classic world
	Digital Signature in the quantum world

