
COS 597A: Quantum Cryptography Princeton University
Homework 1 Due: October 10, 2018

Homework 1

1 Problem 1

Consider the following Experiment 1. Sample a random bit b, and produce the
state |φ〉 = |b〉.
Prove that the output of this experiment cannot be described by a pure state alone.
In particular, suppose toward contradiction that there was a pure state |ψ〉 that
described the output above experiment. Show that in fact |ψ〉 can be distinguished
from |φ〉. To do so, devise a unitary matrix U (based on |ψ〉) such that if you apply
U to |ψ〉 or |φ〉 and measure, the outcomes of the measurements will have different
probability distributions.

A state |φ〉 sampled from a probability distribution like the procedure above is known
as a mixed state.

2 Problem 2

Consider the following Experiment 2. Sample a random bit b, and produce the

state |φ′〉 = 1√
2
|0〉 + (−1)b√

2
|1〉. Equivalently, sample |φ〉 according to Experiment 1,

and then apply the Hadamard transformation.

Show that there is no unitary transformation followed by a measurement that distin-
guishes |φ〉 sampled from Experiment 1 from |φ′〉 sampled from Experiment 2.
That is, show that for any unitary U , if you apply U to |φ〉 and measure, or apply U
to |φ′〉 and measure, the probability distributions in the two cases are identical.

3 Problem 3

The right way to describe a mixed state is by a density matrix. Suppose that state
|φi〉 is sampled with probability pi. Then the density matrix is the matrix

ρ =
∑
i

pi|φi〉〈φi|

(Remember that the notation 〈φi| means the row vector that is the conjugate trans-
pose of |φi〉)
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It turns out that the density matrix captures all statistical information about the
mixed state. That is, no sequence of unitary operations and measurements can dis-
tinguish two mixed states with the same density matrix, and for any two states with
different density matrices, there is a unitary and measurement that distinguish the
two (with some non-zero probability).

(a) A pure state is a special case of a mixed state where the probability distribution
has support on only a single state. Therefore, pure states also have density
matrices. What is special about the density matrix for a pure state?

(b) What is the density matrix for the output of Experiment 1? Combined with
part (a), Why does this show that the state can be distinguished from any pure
state?

(c) What is the density matrix for the output of Experiment 2?

(d) Given an arbitrary mixed state, suppose you apply a unitary U to the state.
Explain how to transform the corresponding density matrix?

(e) Given an arbitrary mixed state, suppose you measure the state. Let qj be the
probability the measurement gives j. What is qj in terms of the density matrix
for the state? Hint: start by analyzing pure states, and then build up to a
mixed state from there.

(f) Mixed states are useful for characterizing the state that remains after performing
a measurement. What is the density matrix for the state that results from
measuring a pure state |φ〉, in terms of the entries in |φ〉?

(g) The result of measuring a mixed state is another mixed state. How does mea-
suring transform the density matrix?

(h) Suppose I have a mixed state over a 2-qubit system. Now I measure the first
qubit. How does this affect the density matrix?

(i) Consider a mixed qubit state, defined by an arbitrary distribution over poten-
tially many pure states |φi〉. Prove that this mixed state is equivalent to a
mixed state whose probability distribution is over just two pure states.

4 Problem 4

Here, we will discuss how to generalize our notion of a measurement. Consider a quan-
tum state over set B of size n. Fix an arbitrary orthonormal basis C = {|b1〉, . . . , |bn〉}
for the space Cn. That is, |bi〉 are all orthogonal vectors.
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The result of measuring |φ〉 in basis C is the following. First, the measurement will
output i with probability |〈bi|φ〉|2. Then, the state will collapse to |bi〉.
The definition of measurement we saw in class is the special case where C is the
computational basis.

(a) Explain why the probability distribution over i is in fact a probability distribu-
tion (that is, the probabilities sum to 1).

(b) Show that measuring in basis C is equivalent to (1) applying a unitary U , (2)
measuring in the computational basis, and (3) applying a unitary U ′. Thus,
without loss of generality, we can usually just consider measuring in the com-
putational basis.

5 Problem 5

Even more general measurements are possible. Here, we will consider what are known
as projective measurements. Such a measurement is specified by a set of projection
matrices P1, . . . , Pk. A projection matrix P is a Hermitian matrix (meaning P † = P )
such that P 2 = P . We will additionally need that

∑
i Pi is the identity matrix.

The result of applying the projective measurement to |φ〉 is the following. First, the
measurement will output i with probability 〈φ|Pi|φ〉. Then, the state will collapse to

Pi|φ〉√
〈φ|Pi|φ〉

.

(a) Explain why the probability distribution over i is in fact a probability distribu-
tion (that is, the probabilities are non-negative and sum to 1).

(b) Show that, if a projective measurement is applied twice to the same state, the
outcomes of the measurement will be the same both times.

(c) Show that a measurement in basis C can be described as a projective measure-
ment.

(d) Consider a 2-qubit state, and consider measuring the first qubit. Describe this
partial measurement at a projective measurement.

(e) Let ρ be the density matrix for a mixed state, and ρ′ the density matrix resulting
from applying the projective measurement. What is ρ′ in terms of ρ?
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