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Basic Number Theory

1 Divisibility and Primality

Given two integers a, b, we say that a divides b if there exists an integer c such that
b = ac. We denote this by a|b. In this case, a is a divisor of b. If a does not divide b,
we write a - b.
An integer p > 1 is prime if the only divisors of p are ±1 and ±p. That is, for every
a /∈ {±1,±p}, a | p. An integer n > 1 is composite if it is not prime. In other words,
there exists an integer a /∈ {±1,±n} such that a|n. Primality can be tested in time
polynomial in the bit-length of p.

Theorem 1 (Fundamental Theorem of Arithmetic). For any non-zero integer n, n
can be expressed as

n = ±
k∏
i=1

paii

for primes p1 < · · · < pk and positive integers ai > 0. Moreover, the representation is
unique. Here, we take the convention that the empty product (k = 0) evaluates to 1.

The greatest common divisor (GCD) of two integers a, b is the largest integer d such
that d|a and d|b. We denote d by GCD(a, b). The Euclidean algorithm computes
GCD(a, b), and if a, b are n-bits, the running time is O(n3) (asymptotically faster
algrithms exist, but the hidden constants make the Euclidean algorithm superior
except for extremely large numbers). Two integers a, b are said to be relatively prime
if GCD(a, b) = 1.

2 Modular Arithmetic

Fix an integer n > 1. Think of n as being quite large, e.g. 1024 bits.

Two integers a, b are said to be congruent modulo n if n|(a− b). In this case, we write
a ≡ b mod n. Note that congruency modulo n is transitive: if a ≡ b mod n and
b ≡ c mod n, then a ≡ c mod n.

For any integer a, there is a unique integer r, 0 ≤ r < n, such that a ≡ r mod n.
Given a, we will use a mod n to denote this r. Note that by a mod n can be computed
in quadratic time (in the bit-length of a and n).
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The mod operation induces an additive group structure on the set {0, · · · , n−1}. The
identity is 0. To add or subtract two elements a, b, simply add or subtract over the
integers, and then reduce the result mod n: (a± b) mod n. This process takes linear
time in the bit-length of a, b, n (Note that we do not need to pay the full quadratic
cost of the modular reduction since we know that a+ b is at most 2n).

In fact, we can even give a ring structure with multiplicative identity 1. To multiply
two elements, simply multiply over the integers and reduce modn: (a × b) mod n.
Multiplication can be performed in quadratic time using the grade-school multiplica-
tion algorithm, though asymptotically faster algorithms exist for very large integers.
We will denote the set {0, · · · , n− 1}, along with the induced ring structure, by Zn.

For some integers, it is also possible to compute multiplicative inverses modn. Sup-
pose a ∈ Zn is relatively prime to n. a is called a unit of Zn. Then, there is a unique
integer b ∈ Zp such that a× b ≡ 1 mod n. We will denote this b by a−1 mod n. The
Extended Euclidean algorithm allows for efficiently computing the inverse of a, if it
exists, and the running time is cubic in the bit-length of its inputs. For an integer a
that is not relatively prime to n, there is no multiplicative inverse.

For an integer c and a unit a, we define c/a mod n to be (c× (a−1 mod n)) mod n.

Denote by Z∗
n the set of units of Zn. Then Z∗

n is a multiplicative group with identity
1. The number of elements in Z∗

n is given by the Euler totient function φ(n). For
n =

∏k
i=1 p

ai
i ,

φ(n) =
k∏
i=1

pai−1
i (pi − 1) = n×

k∏
i=1

(
1− 1

pi

)

Given integer b and element a ∈ Z∗
p, it is possible to compute ab mod n efficiently (in

the bit-length of a, b, n) by repeated squaring.

An element a ∈ Zn is a quadratic residue mod n if there exists an element r ∈ Zn
such that a ≡ r2 mod n. In this case, r is called a square root of a.

2.1 The Prime Case

Let p be a prime, and consider the sets Zp,Z∗
p. Since p has no divisors other than 1

and itself, the only non-unit of Zp is 0, so we have that Z∗
p = {1, . . . , p − 1}, which

has size φ(p) = p− 1. This means Zp is a field : all non-zero elements are invertible.

Theorem 2 (Fermat’s Little Theorem). For any integer a, ap ≡ a mod p. If a 6≡ 0
mod n, then ap−1 ≡ 1 mod p.

Theorem 3. The multiplicative group Z∗
p is cyclic. That is, there is an element

g ∈ Z∗
p such that Z∗

p = {1, g, g2, . . . , gp−2}. g is called a generator of Z∗
p.
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Quadratic Residues mod p. Assume p > 2. Given a quadratic residue a ≡ r2

mod p other than 0, there are exactly two square roots of a: +r and −r. This follows
from the fact that over a field, the polynomial x2 − a has at most two roots. In
particular, there are only two square roots of 1 mod p, namely +1 and −1.

Easy problems in Zp.

• Addition, subtraction, multiplication, division, exponentiation

• Generating a random element

• Determine if a is a quadratic residue

• If a is a quadratic residue, determine one of its roots

• Solving low-degree polynomial equations

Problems believed to be hard in Zp.

• Discrete log: given a generator g for Z∗
p and h = gr mod p, compute r.

• Computational Diffie-Hellman: given a generator g, and elements x = ga mod p
and y = gb mod p, compute z = gab mod p

2.2 The Composite Case

Let n be a composite number.

Theorem 4 (Euler’s Theorem). For any integer a ∈ Z∗
n, aφ(n) ≡ 1 mod n.

This follows from Lagrange’s theorem and the fact that Z∗
n is a multiplicative group

with size φ(n).

Chinese Remainder Theorem (CRT). Let n = pq where p, q are relatively
prime. Then given r ∈ Zp, s ∈ Zq, there exists a unique integer t ∈ Zn such that
r = t mod p and s = t mod q. Moreover, s can be computed efficiently.

This means that each t ∈ Zn can be viewed as a pair (r, s) ∈ Zp × Zq. Arithmetic
operations in Zn corresponds to component-wise operations on Zp × Zq. So t0 + t1
corresponds to the pair (r0 + r1, s0 + s1) and t0 × t1 corresponds to (r0 × r1, s0 × s1).
Therefore, an element t ∈ Zn is invertible in Zn if and only if r and s are invertible
in Zp and Zq respectively. Similarly, t is q quadratic residue if and only if r, s are
quadratic residues.
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We will now focus on the case where n is a product of 2 primes, say p and q. We
will generally consider the case where p and q are about the same size. Then we have
that Z∗

n has size (p− 1)(q− 1). This can be easily seen using the Chinese Remainder
Theorem and the fact that Z∗

p and Z∗
q have (p− 1) and (q− 1) elements, respectively.

Quadratic Residues. If a = t2 mod n, there are actually now 4 square roots.
Indeed, if we consider r = t mod p and s = t mod q, the four square roots are the
result of applying the CRT to the four pairs (±r,±s).

Easy problems in Zn.

• Addition, subtraction, multiplication, division, exponentiation

• Generating a random element

• Solving linear equations

Problems believed to be hard in Zn.

• Discrete log, computational Diffie-Hellman

• Factoring n

• Determine if a is a quadratic residue, computing a square root.

• Solving non-linear (even degree 2) polynomial equations.
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