COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously

Pseudorandom Functions and Permutaitons

Modes of Operation

Pseudorandom Functions

Functions that "look like" random functions

Syntax:

- Key space **{0,1}**^λ
- Domain X (usually $\{0,1\}^m$, m may depend on λ)
- Co-domain/range Y (usually $\{0,1\}^n$, may depend on λ)
- Function $F:\{0,1\}^{\lambda} \times X \rightarrow Y$

Pseudorandom Permutations (also known as block ciphers)

Functions that "look like" random permutations

Syntax:

- Key space **{0,1}**^λ
- Domain X (usually $\{0,1\}^n$, n usually depends on λ)
- Range X
- Function $F:\{0,1\}^{\lambda} \times X \rightarrow X$
- Function $F^{-1}:\{0,1\}^{\lambda} \times X \rightarrow X$

Correctness: $\forall k,x, F^{-1}(k, F(k, x)) = x$

Pseudorandom Permutations

Pseudorandom Permutations

Pseudorandom Permutations

Theorem: A PRP (F,F^{-1}) is secure iff F is a secure

as a PRF

Theorem: There are secure PRPs (F,F^{-1}) where (F^{-1},F) is insecure

Strong PRPs

PRF-Exp_o(\hbar , λ)

Strong PRPs

Theorem: If (F,F^{-1}) is a strong PRP, then so is

(F⁻¹,F)

PRPs vs PRFs

In practice, PRPs are the central building block of most crypto

- Also PRFs
- Can build PRGs
- Very versatile

Today

Constructing PRPs

Today, we are going to ignore negligible, and focus on concrete parameters

- E.g. 128 bit blocks
- Adversary running time << 2¹²⁸
- Etc.

Difficulties

2ⁿ! Permutations on **n**-bit blocks $\Rightarrow \approx n2^n$ bits to write down random perm.

Reasonable for very small **n** (e.g. **n<20**), but totally infeasible for large **n** (e.g. **n=128**)

Challenge:

 Design permutations with small description that "behave like" random permutations

Difficulties

For a random permutation H, H(x) and H(x') are (essentially) independent random strings

• Even if **x** and **x'** differ by just a single bit

Therefore, for a random key k, changing a single bit of x should "affect" all output bits of F(k,x)

Definition: For a function $H:\{0,1\}^n \rightarrow \{0,1\}^n$, we say that bit **i** of the input affects bit **j** of the output if:

For a random $x_1,...,x_{i-1},x_{i+1},...,x_n$, if we let $y=H(x_1...x_{i-1}0x_{i+1}...x_n)$ and $z=H(x_1...x_{i-1}1x_{i+1}...x_n)$ Then $y_i \neq z_i$ with probability $\approx 1/2$ Theorem: If (F,F^{-1}) is a secure PRP, then with (with "high" probability over the key k), for the function $F(k,\bullet)$, every bit of input affects every bit of output

Proof:

- For random permutations this is true
- If bit **i** did not affect bit **j**, we can construct an adversary that distinguishes **F** from random

Goal: build permutation for large blocks from permutations for small blocks

- Small block perms can be made truly random
- Hopefully result is pseudorandom

First attempt: break blocks into smaller blocks, apply smaller permutation blockwise

Key: description of $\mathbf{f_1}$, $\mathbf{f_2}$,...

Is this a secure PRP?

- Key size: $\approx (8 \times 2^8) \times (128/8) = 2^{15}$, so reasonable
- Running time: a few table lookups, so efficient
- Security?

Second attempt: shuffle output bits

Is this a secure PRP?

- Key size: $\approx 2^{15} + 128 \times \text{Log } 128 \approx 2^{15}$
- Running time: a few table lookups
- Security?

While confusion/diffusion is not secure, we've made progress

Each bit affects 8 output bits

Next step: repeat!

With 2 rounds,

Each bit affects 64 output bits

With 3 rounds, all 128 bits are affected

Repeat a few more times for good measure

Why is 3 rounds still not enough?

Variant of previous construction

- Fixed public permutations for confusion (called a substitution box, or S-box)
- Fixed public permutation for diffusion (called a permutation box, or P-box)
- XOR "round key" at beginning of each round

To specify a network, must:

- Specify S-boxes
- Specify P-box
- Specify key schedule (how round keys are derived from master)

Choice of parameters can greatly affect security

Designing SPNs

Avalanche Affect:

 Need S-boxes and mixing permutations to cause every input bit to "affect" every output bit

One way to guarantee this:

- Changing any bit of S-box input causes at least 2 bits of output to change
- Mixing permutations send outputs of S-boxes into at least 2 different S-boxes for next round
- Sufficiently many rounds are used
- At least how many rounds should be used?

Designing SPNs

For strong PRPs, need avalanche in reverse too

- Changing one bit of output of S box changes at least 2 bits of input
- Mixing permutations take inputs for next round from at least two different S-box outputs

Designing S-Boxes

Random?

- Let **x**,**x**' be two distinct 4-bit values
- Pr[S(x)] and S(x') differ on a single bit] = 4/15
- Very high probability that some pair of inputs will have outputs that differ on a single bit

Therefore, must carefully design S-boxes rather than choose at random

Linearity?

Can S-Boxes be linear?

• That is, $S(x_0) \oplus S(x_1) = S(x_0 \oplus x_1)$?

AES

State = **4×4** grid of bytes

AES

One fixed S-box, applied to each byte

- Step 1: multiplicative inverse over finite field \mathbb{F}_8
- Step 2: fixed affine transformation
- Implemented as a simple lookup table

Diffusion (not exactly a P-box):

- Step 1: shift rows
- Step 2: mix columns

Shift Rows:

Mix Columns

- Each byte interpreted as element of \mathbb{F}_8
- Each column is then a length-4 vector
- Apply fixed linear transformation to each column

Number of rounds depends on key size

- 128-bit keys: 10 rounds
- 192-bit keys: 12 rounds
- 256-bit keys: 14 rounds

Key schedule:

- Won't describe here, but involves more shifting, Sboxes, etc
- Can think of key schedule as a weak PRG

Fiestel Networks

Feistel Networks

Designing permutations with good security properties is hard

What if instead we could built a good permutation from a function with good security properties...

Feistel Network

Convert functions into permutations

Can this possibly give a secure PRP?

Feistel Network

Convert functions into permutations

Feistel Network

Depending on specifics of round function, different number of rounds may be necessary

- Number of rounds must always be at least 3
- (Need at least 4 for a strong PRP)
- Maybe need even more for weaker round functions

Luby-Rackoff

3- or 4-round Feistel where round function is a PRF

Theorem: If F is a secure PRF, then 3 rounds of Feistel (with independent round keys) give secure PRP. 4 rounds give a strong PRP

Proof non-trivial, won't be covered in this class

Constructing Round Functions

Ideally, "random looking" functions

Similar ideas to constructing PRPs

- Confusion/diffusion
- SPNs, S-boxes, etc

Key advantage is that we no longer need the functions to be permutations

S-boxes can be non-permutations

DES

Block size: 64 bits

Key size: 56 bits <

Rounds: 16

DES

Key Schedule:

Round keys are just 48-bit subsets of master key

Round function:

Essentially an SPN network

DES S-Boxes

8 different S-boxes, each

- 6-bit input, 4-bit output
- Table lookup: 2 bits specify row, 4 specify column

- Each row contains every possible 4-bit output
- Changing one bit of input changes at least 2 bits of output

DES History

Designed in the 1970's

- At IBM, with the help of the NSA
- At the time, many in academia were suspicious of NSA's involvement
 - Mysterious S-boxes
 - Short key length
- Turns out, S-box probably designed well
 - Resistant to "differential cryptanalysis"
 - Known to IBM and NSA in 1970's, but kept secret
- Essentially only weakness is the short key length
 - Maybe secure in the 1970's, definitely not today

DES Security Today

Seems like a good cipher, except for its key length and block size

What's wrong with a small block size?

- Remember for e.g. CTR mode, IV is one block
- If two identical IV's seen, attack possible
- After seeing q ciphertext, probability of repeat IV is roughly q²/2^{block length}
- Attack after seeing ≈ billion messages

3DES: Increasing Key Length

3DES key = Apply DES three times with different keys

Why three times?

 Next time: "meet in the middle attack" renders 2DES no more secure than 3DES
 Why inverted second permutation?

Limitations of Feistel Networks

Turns out Feistel requires block size to be large

• If number of queries ~2^{block size/2}, can attack

Format preserving encryption:

- Encrypted data has same form as original
- E.g. encrypted SSN is an SSN
- Useful for encrypting legacy databases

Sometimes, want a very small block size

Unbalanced Feistel

"Target heavy"

Unbalanced Feistel

"Source heavy"

Unbalanced Feistel

Taken to the extreme (where source or target is just 1 bit), one these is insecure, regardless of the round function

Which one?

Next Time

Attacks on Block Ciphers