COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously

Pseudorandom Functions and Permutaitons

Modes of Operation

Pseudorandom Functions

Functions that “look like” random functions

Syntax:

* Key space §{0,1}*

e Domain X (usually §0,1}™, m may depend on A)
 Co-domain/range Y (usually §0,1}", may depend on A)
* Function F:{0,1}* x X>Y

Pseudorandom Permutations

(also known as block ciphers)

Functions that “look like” random permutations

Syntax:

Key space {0,1}*
Domain X (usually {0,137, n usually depends on A)

Range X
Function F:§0,1}* x X>X

Function F-1:40,1}* x X>X

Correctness: YV Kk,x, F-i(k, F(k, x)) = x

Pseudorandom Permutations

N

Challenger

Security:

Cxex

Pseudorandom Permutations

b=0

A
Challenger K & K;\
CXEX

PRF-Exp,(X , A)

Security:

Pseudorandom Permutations

/7\\ T:l

Challenger p&perms(X,X)
Cx -

PRF-Exp,(K , A)

Security:

o

as a PRF

4 I
Theorem: A PRP (F,F-1) is secure iff F is a secure

J

-

o

Theorem: There are secure PRPs (F,F‘l) where
(F-L,F) is insecure

Strong PRPs

Strong PRPs

Challenger HéPermS(x X)

v’ é y € H(x)

o

‘Theorem: If (F,F-1) is a strong PRP, then so is

(FLF)

~

PRPs vs PRFs

In practice, PRPs are the central building block of
most crypto

* Also PRFs

* Can build PRGs

* Very versatile

Today

Constructing PRPs

Today, we are going to ignore negligible, and focus on
concrete parameters

* E.g. 128 bit blocks

* Adversary running time <<2128

* Etc.

Difficulties

2"l Permutations on n-bit blocks
= =n2" bits to write down random perm.

Reasonable for very small n (e.g. n<20), but totally
infeasible for large n (e.g. n=128)

Challenge:
* Design permutations with small description that

“behave like” random permutations

Difficulties

For a random permutation H, H(x) and H(x’) are
(essentially) independent random strings
e Even if X and x differ by just a single bit

Therefore, for a random key K, changing a single bit
of X should “affect” all output bits of F(K,x)

/Definition: For a function H:{0,1}» = {0,1}", we I
say that bit i of the input affects bit j of the output
if:

For a random X, .., Xi_1,Xi 1, -0 Xp if We let
Y:H(xloooXi_IOXi+l ...Xn) and
z=H(xlu.Xi_IIXi+lu.xn)

Qhen y; # Z; with probability = 1/2 /

‘Theorem: If (FF-1) is a secure PRP, then with (with A

“high” probability over the key K), for the function

F(k,®), every bit of input affects every bit of output
- Y

Proof:

* For random permutations this is true

* If bit i did not affect bit j, we can construct an
adversary that distinguishes F from random

Confusion/Diffusion Paradigm

Confusion/Diffusion Paradigm

Goal: build permutation for large blocks from
permutations for small blocks

* Small block perms can be made truly random
* Hopefully result is pseudorandom

Confusion/Diffusion Paradigm

First attempt: break blocks into smaller blocks, apply
smaller permutation blockwise

Big blocks (e.g. 128 bits)
A

[\
Small blocks (e.g. 8 bits)

f, £ £ £, s F
4 v v v v v
4 5 1 3 J

Key: description of £, f,,...

Confusion/Diffusion Paradigm

£, | £ | F || F | £ || £
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4
1 £ 1 1 1
s this a secure PRP?
* Key size: =(8x28)x(128/8) = 215, so reasonable

* Running time: a few table lookups, so efficient
e Security?

Confusion/Diffusion Paradigm

Second attempt: shuffle output bits

P Y N S —

f, :|> Confusion

Diffusion

Is this a secure PRP?

* Key size: 221> + 128xLog 128 = 2!°
* Running time: a few table lookups

e Security?

Confusion/Diffusion Paradigm

While confusion/diffusion is not secure, we’ve made
progress
* Each bit affects 8 output bits

Next step: repeat!

Confusion/Diffusion Paradigm

ii i = Round

Confusion/Diffusion Paradigm

With 2 rounds,
* Each bit affects 64 output bits

With 3 rounds, all 128 bits are affected

Repeat a few more times for good measure
* Why is 3 rounds still not enough?

Substitution Permutation Networks

Variant of previous construction
* Fixed public permutations for confusion (called a
substitution box, or S-box)

* Fixed public permutation for diffusion (called a
permutation box, or P-box)

* XOR “round key” at beginning of each round

Substitution Permutation Networks

Round =

ey g g g g} Round ey

Substitution Permutation Networks

Round key

Round =

Potentially
different

Substitution Permutation Networks

e e e e B} Roun ey
s 8

Potentially
different

Final key
mixing

Substitution Permutation Networks

To specify a network, must:

* Specify S-boxes

 Specify P-box

 Specify key schedule (how round keys are derived
from master)

Choice of parameters can greatly affect security

Designing SPNs

Avalanche Affect:
* Need S-boxes and mixing permutations to cause
every input bit to “affect” every output bit

One way to guarantee this:

* Changing any bit of S-box input causes at least 2
bits of output to change

* Mixing permutations send outputs of S-boxes into
at least 2 different S-boxes for next round

e Sufficiently many rounds are used

* At least how many rounds should be used?

Designing SPNs

For strong PRPs, need avalanche in reverse too

* Changing one bit of output of S box changes at
least 2 bits of input

* Mixing permutations take inputs for next round
from at least two different S-box outputs

Designing S-Boxes

Random?
e Let X,X’ be two distinct 4-bit values

* Pr[S(x) and S(x’) differ on a single bit] = 4/15
* Very high probability that some pair of inputs will
have outputs that differ on a single bit

Therefore, must carefully design S-boxes rather than
choose at random

Linearity?

Can S-Boxes be linear?
* Thatis, S(X,) @ S(X;) = S(x,9%,)?

AES

State = 4x4 grid of bytes

AES

One fixed S-box, applied to each byte
* Step 1: multiplicative inverse over finite field Fg

 Step 2: fixed affine transformation

* Implemented as a simple lookup table

AES

Diffusion (not exactly a P-box):
e Step 1: shift rows
e Step 2: mix columns

AES

Shift Rows:

AES

Mix Columns
* Each byte interpreted as element of Fg
* Each column is then a length-4 vector

* Apply fixed linear transformation to each column
r “

= X

AES

Number of rounds depends on key size
* 128-bit keys: 10 rounds
* 192-bit keys: 12 rounas
* 256-bit keys: 14 rounds

Key schedule:

* Won’t describe here, but involves more shifting, S-
boxes, etc

e Can think of key schedule as a weak PRG

Fiestel Networks

Feistel Networks

Desighing permutations with good security
properties is hard

What if instead we could built a good permutation
from a function with good security properties...

Feistel Network

Convert functions into permutations

I
)
F public
;F< K secret

Can this possibly give a secure PRP?

Feistel Network

Convert functions into permutations

F: round function
Ko.K;: round keys

Feistel Network

Depending on specifics of round function, different

number of rounds may be necessary
* Number of rounds must always be at least 3

* (Need at least 4 for a strong PRP)

* Maybe need even more for weaker round functions

Luby-Rackoftf

3- or 4-round Feistel where round function is a PRF

/Theorem: If F is a secure PRF, then 3 rounds of Feistel\
(with independent round keys) give secure PRP. 4
\rounds give a strong PRP

* Proof non-trivial, won’t be covered in this class

Constructing Round Functions

ldeally, “random looking” functions

Similar ideas to constructing PRPs
* Confusion/diffusion
* SPNs, S-boxes, etc

Key advantage is that we no longer need the
functions to be permutations
* S-boxes can be non-permutations

DES

Block size: 64 bits

Key size: 56 bits
Rounds: 16 \ |11

DES

Key Schedule:
* Round keys are just 48-bit subsets of master key

Round function:
* Essentially an SPN network

DES S-Boxes

8 different S-boxes, each
* 6-bit input, 4-bit output
* Table lookup: 2 bits specify row, 4 specify column

* Each row contains every possible 4-bit output
* Changing one bit of input changes at least 2 bits of
output

DES History

Designed in the 1970’s
* At IBM, with the help of the NSA
* At the time, many in academia were suspicious of

NSA’s involvement

* Mysterious S-boxes
* Short key length

* Turns out, S-box probably designed well
e Resistant to “differential cryptanalysis”
 Known to IBM and NSA in 1970’s, but kept secret

* Essentially only weakness is the short key length
* Maybe secure in the 1970’s, definitely not today

DES Security Today

Seems like a good cipher, except for its key length
and block size

What’s wrong with a small block size?

* Remember for e.g. CTR mode, IV is one block

* If two identical IV’s seen, attack possible

* After seeing g ciphertext, probability of repeat IV is
roughly q2/2block length

» Attack after seeing = billion messages

3DES: Increasing Key Length

3DES key = Apply DES three times with different keys
Ko Ky K

—> DES —> DEs! —> DES —>

Why three times?

* Next time: “meet in the middle attack” renders
2DES no more secure than 3DES

Why inverted second permutation?

Limitations of Feistel Networks

Turns out Feistel requires block size to be large
* If number of queries ~2blocksize/2 " cqn agttack

Format preserving encryption:
* Encrypted data has same form as original
* E.g. encrypted SSN is an SSN

» Useful for encrypting legacy databases

Sometimes, want a very small block size

Unbalanced Feistel

_k [
¥

F o

“Target heavy”

Unbalanced Feistel

B E—
}
F o

“Source heavy”

Unbalanced Feistel

Taken to the extreme (where source or target is just
1 bit), one these is insecure, regardless of the round
function

Which one?

Next Time

Attacks on Block Ciphers

