# COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

# Previously

Pseudorandom Functions and Permutaitons

**Modes of Operation** 

#### Pseudorandom Functions

Functions that "look like" random functions

#### Syntax:

- Key space **{0,1}**<sup>λ</sup>
- Domain X (usually  $\{0,1\}^m$ , m may depend on  $\lambda$ )
- Co-domain/range Y (usually  $\{0,1\}^n$ , may depend on  $\lambda$ )
- Function  $F:\{0,1\}^{\lambda} \times X \rightarrow Y$

# Pseudorandom Permutations (also known as block ciphers)

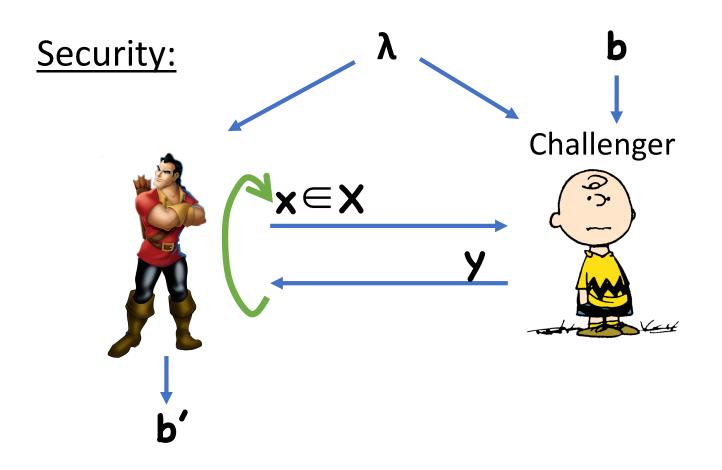
Functions that "look like" random permutations

#### Syntax:

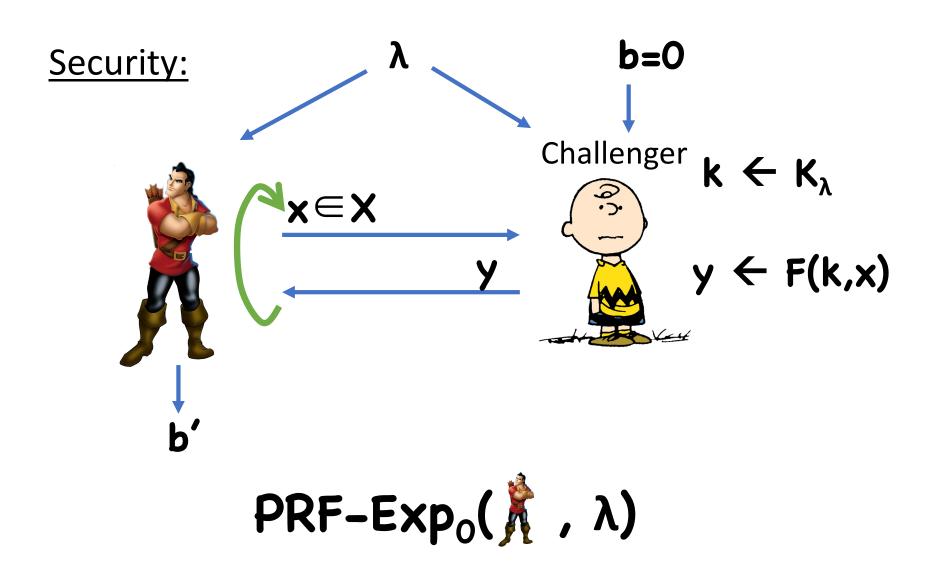
- Key space **{0,1}**<sup>λ</sup>
- Domain X (usually  $\{0,1\}^n$ , n usually depends on  $\lambda$ )
- Range X
- Function  $F:\{0,1\}^{\lambda} \times X \rightarrow X$
- Function  $F^{-1}:\{0,1\}^{\lambda} \times X \rightarrow X$

Correctness:  $\forall k,x, F^{-1}(k, F(k, x)) = x$ 

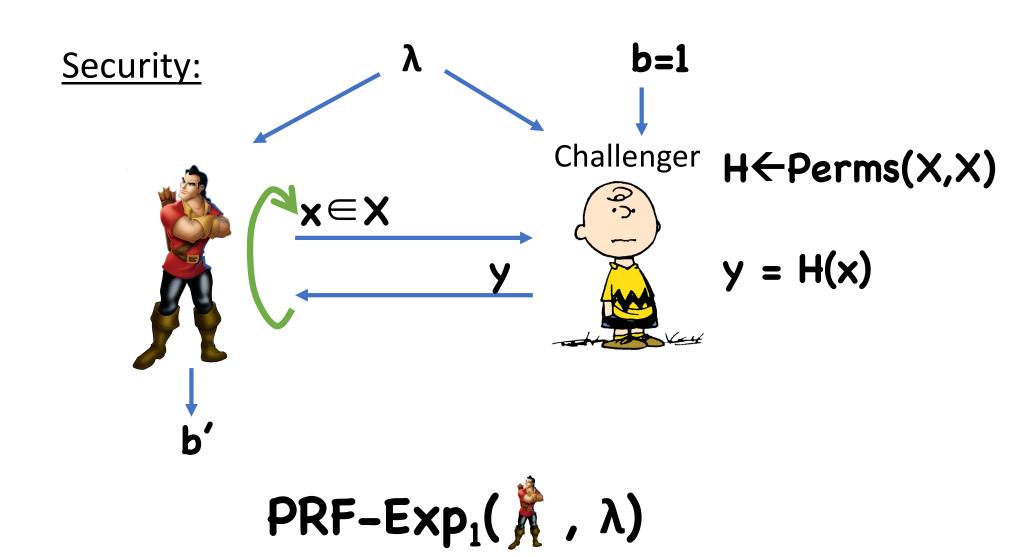
## Pseudorandom Permutations



### Pseudorandom Permutations



#### Pseudorandom Permutations

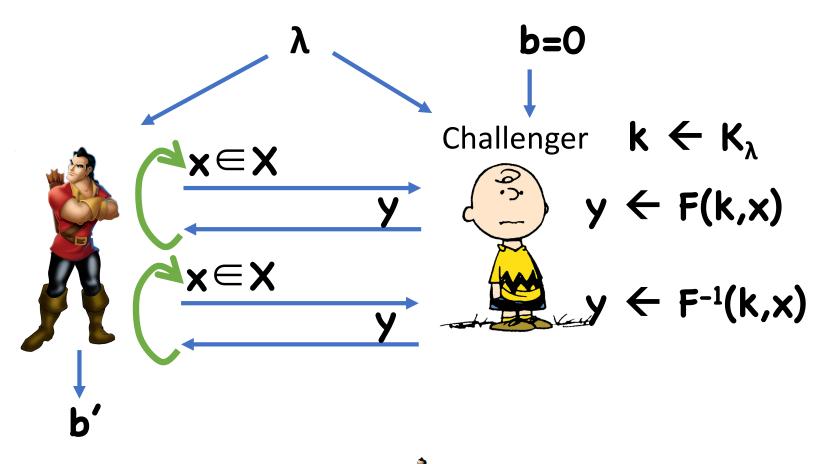


Theorem: A PRP  $(F,F^{-1})$  is secure iff F is a secure

as a PRF

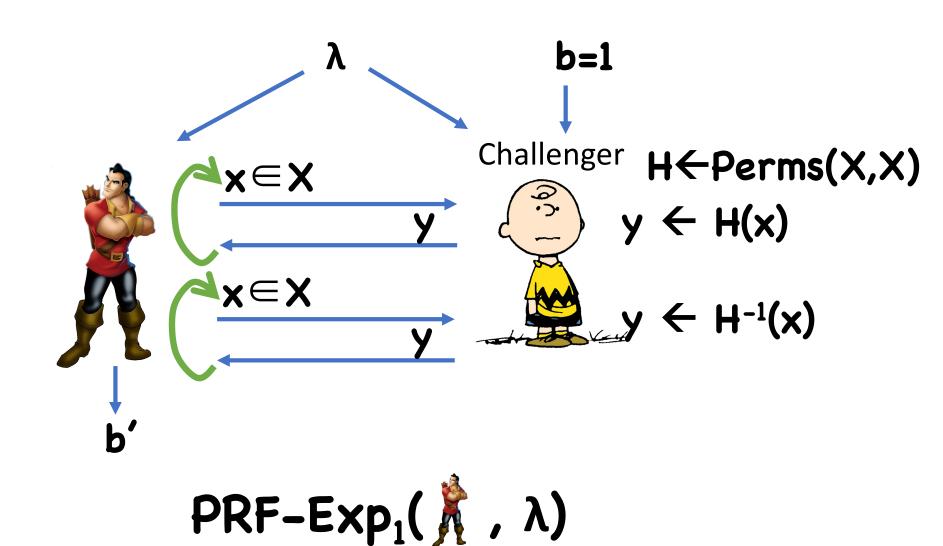
Theorem: There are secure PRPs  $(F,F^{-1})$  where  $(F^{-1},F)$  is insecure

# Strong PRPs



PRF-Exp<sub>o</sub>( $\hbar$ ,  $\lambda$ )

# Strong PRPs



Theorem: If  $(F,F^{-1})$  is a strong PRP, then so is

(F<sup>-1</sup>,F)

#### PRPs vs PRFs

In practice, PRPs are the central building block of most crypto

- Also PRFs
- Can build PRGs
- Very versatile

# Today

#### **Constructing PRPs**

Today, we are going to ignore negligible, and focus on concrete parameters

- E.g. 128 bit blocks
- Adversary running time << 2<sup>128</sup>
- Etc.

### Difficulties

2<sup>n</sup>! Permutations on **n**-bit blocks  $\Rightarrow \approx n2^n$  bits to write down random perm.

Reasonable for very small **n** (e.g. **n<20**), but totally infeasible for large **n** (e.g. **n=128**)

#### Challenge:

 Design permutations with small description that "behave like" random permutations

### Difficulties

For a random permutation H, H(x) and H(x') are (essentially) independent random strings

• Even if **x** and **x'** differ by just a single bit

Therefore, for a random key k, changing a single bit of x should "affect" all output bits of F(k,x)

**Definition:** For a function  $H:\{0,1\}^n \rightarrow \{0,1\}^n$ , we say that bit **i** of the input affects bit **j** of the output if:

For a random  $x_1,...,x_{i-1},x_{i+1},...,x_n$ , if we let  $y=H(x_1...x_{i-1}0x_{i+1}...x_n)$  and  $z=H(x_1...x_{i-1}1x_{i+1}...x_n)$ Then  $y_i \neq z_i$  with probability  $\approx 1/2$  Theorem: If  $(F,F^{-1})$  is a secure PRP, then with (with "high" probability over the key k), for the function  $F(k,\bullet)$ , every bit of input affects every bit of output

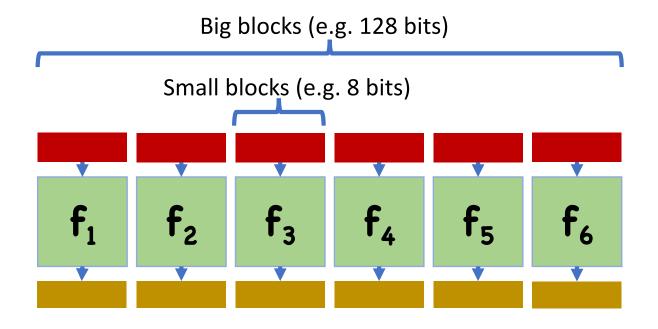
#### **Proof:**

- For random permutations this is true
- If bit **i** did not affect bit **j**, we can construct an adversary that distinguishes **F** from random

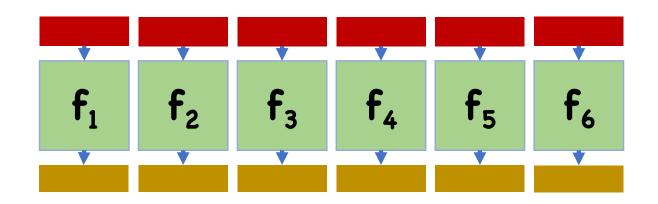
Goal: build permutation for large blocks from permutations for small blocks

- Small block perms can be made truly random
- Hopefully result is pseudorandom

First attempt: break blocks into smaller blocks, apply smaller permutation blockwise



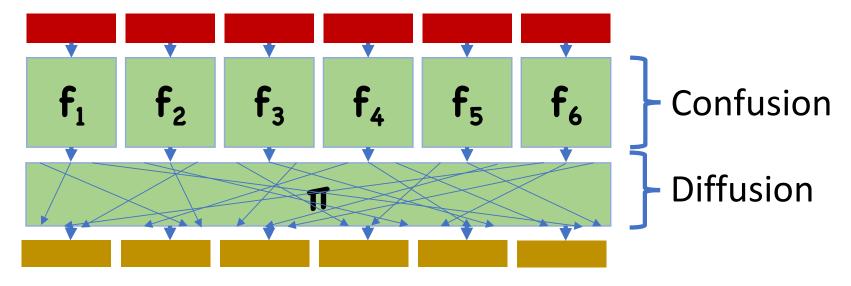
Key: description of  $\mathbf{f_1}$ ,  $\mathbf{f_2}$ ,...



Is this a secure PRP?

- Key size:  $\approx (8 \times 2^8) \times (128/8) = 2^{15}$ , so reasonable
- Running time: a few table lookups, so efficient
- Security?

Second attempt: shuffle output bits



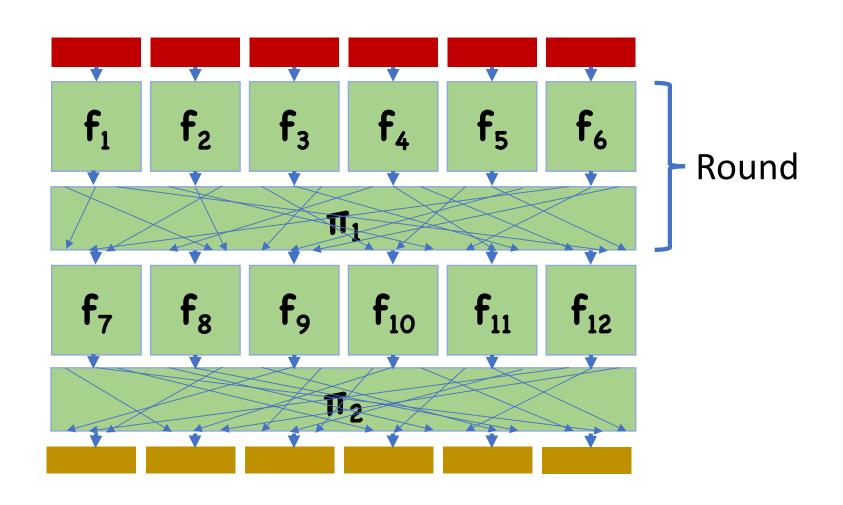
Is this a secure PRP?

- Key size:  $\approx 2^{15} + 128 \times \text{Log } 128 \approx 2^{15}$
- Running time: a few table lookups
- Security?

While confusion/diffusion is not secure, we've made progress

Each bit affects 8 output bits

Next step: repeat!



With 2 rounds,

Each bit affects 64 output bits

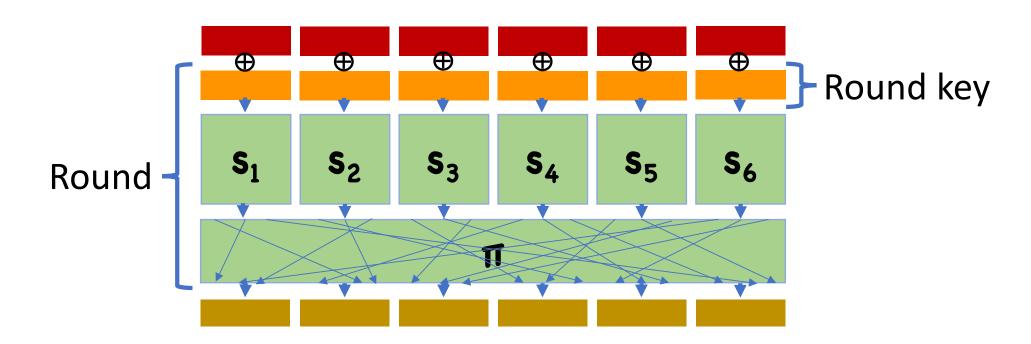
With 3 rounds, all 128 bits are affected

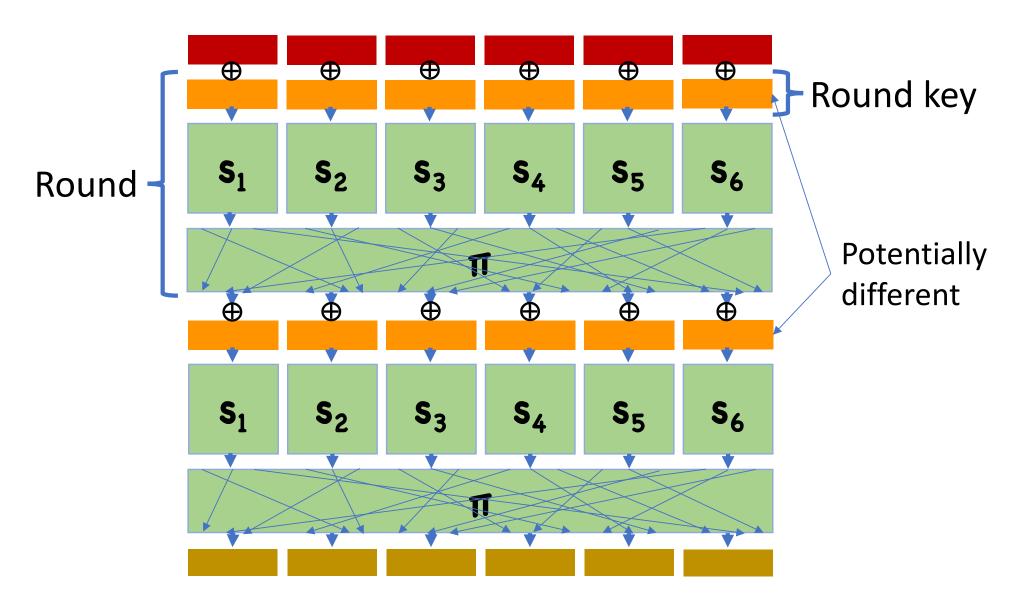
Repeat a few more times for good measure

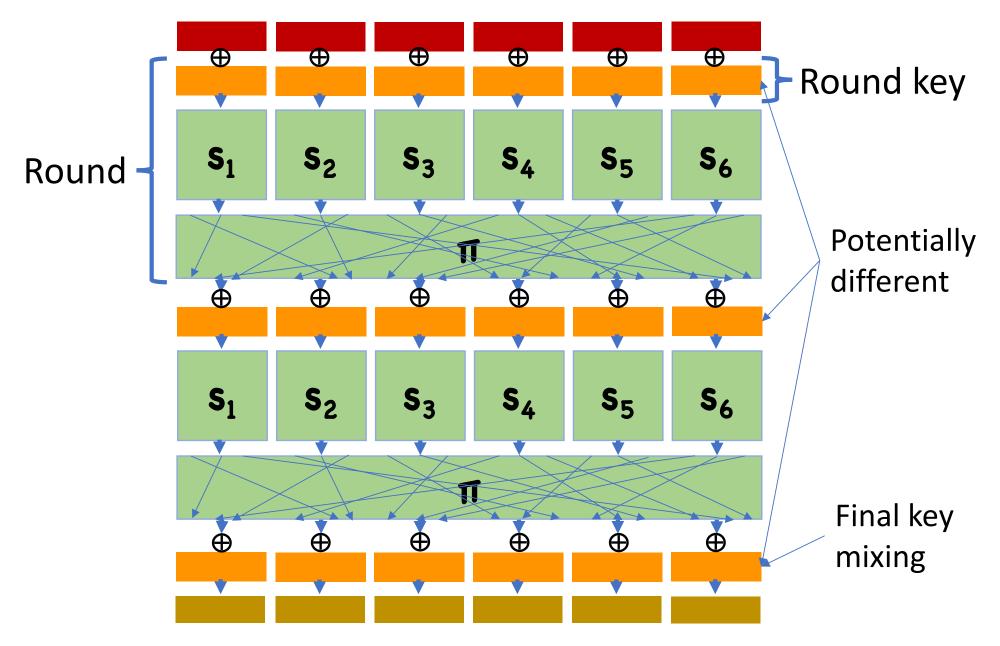
Why is 3 rounds still not enough?

#### Variant of previous construction

- Fixed public permutations for confusion (called a substitution box, or S-box)
- Fixed public permutation for diffusion (called a permutation box, or P-box)
- XOR "round key" at beginning of each round







To specify a network, must:

- Specify S-boxes
- Specify P-box
- Specify key schedule (how round keys are derived from master)

Choice of parameters can greatly affect security

# Designing SPNs

#### **Avalanche Affect:**

 Need S-boxes and mixing permutations to cause every input bit to "affect" every output bit

#### One way to guarantee this:

- Changing any bit of S-box input causes at least 2 bits of output to change
- Mixing permutations send outputs of S-boxes into at least 2 different S-boxes for next round
- Sufficiently many rounds are used
- At least how many rounds should be used?

# Designing SPNs

For strong PRPs, need avalanche in reverse too

- Changing one bit of output of S box changes at least 2 bits of input
- Mixing permutations take inputs for next round from at least two different S-box outputs

# Designing S-Boxes

#### Random?

- Let **x**,**x**' be two distinct 4-bit values
- Pr[S(x)] and S(x') differ on a single bit] = 4/15
- Very high probability that some pair of inputs will have outputs that differ on a single bit

Therefore, must carefully design S-boxes rather than choose at random

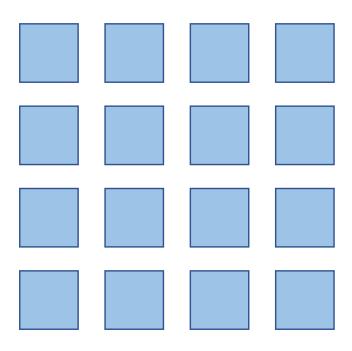
# Linearity?

Can S-Boxes be linear?

• That is,  $S(x_0) \oplus S(x_1) = S(x_0 \oplus x_1)$ ?

### AES

State = **4×4** grid of bytes



#### **AES**

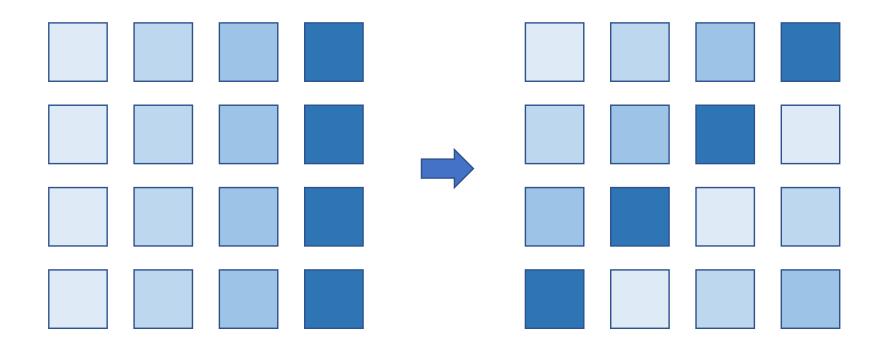
One fixed S-box, applied to each byte

- Step 1: multiplicative inverse over finite field  $\mathbb{F}_8$
- Step 2: fixed affine transformation
- Implemented as a simple lookup table

Diffusion (not exactly a P-box):

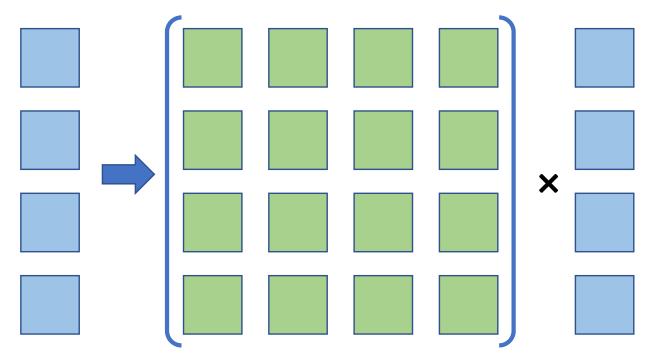
- Step 1: shift rows
- Step 2: mix columns

#### **Shift Rows:**



#### Mix Columns

- Each byte interpreted as element of  $\mathbb{F}_8$
- Each column is then a length-4 vector
- Apply fixed linear transformation to each column



#### Number of rounds depends on key size

- 128-bit keys: 10 rounds
- 192-bit keys: 12 rounds
- 256-bit keys: 14 rounds

#### Key schedule:

- Won't describe here, but involves more shifting, Sboxes, etc
- Can think of key schedule as a weak PRG

## Fiestel Networks

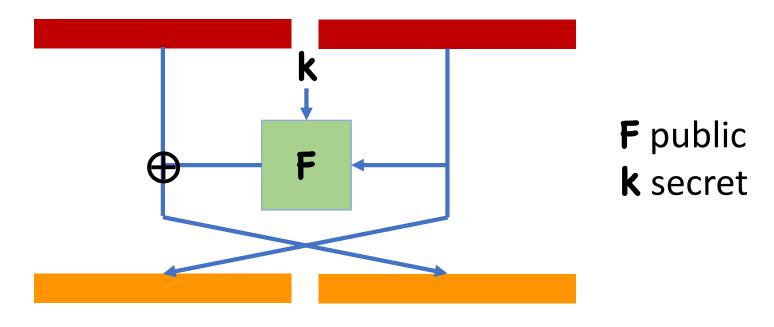
## Feistel Networks

Designing permutations with good security properties is hard

What if instead we could built a good permutation from a function with good security properties...

### Feistel Network

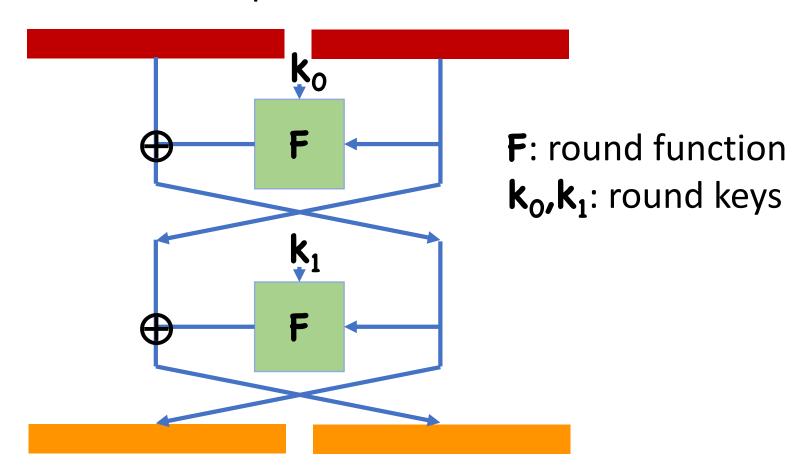
Convert functions into permutations



Can this possibly give a secure PRP?

## Feistel Network

Convert functions into permutations



### Feistel Network

Depending on specifics of round function, different number of rounds may be necessary

- Number of rounds must always be at least 3
- (Need at least 4 for a strong PRP)
- Maybe need even more for weaker round functions

# Luby-Rackoff

3- or 4-round Feistel where round function is a PRF

**Theorem:** If F is a secure PRF, then 3 rounds of Feistel (with independent round keys) give secure PRP. 4 rounds give a strong PRP

Proof non-trivial, won't be covered in this class

# Constructing Round Functions

Ideally, "random looking" functions

Similar ideas to constructing PRPs

- Confusion/diffusion
- SPNs, S-boxes, etc

Key advantage is that we no longer need the functions to be permutations

S-boxes can be non-permutations

# DES

Block size: 64 bits

Key size: 56 bits <

Rounds: 16



#### DES

#### **Key Schedule:**

Round keys are just 48-bit subsets of master key

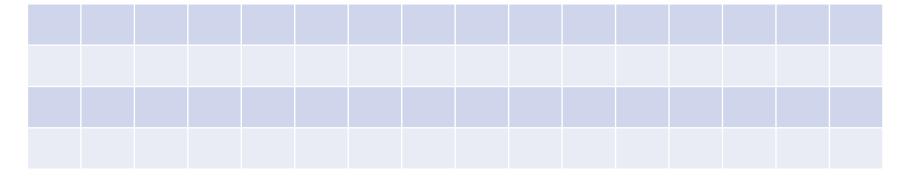
#### Round function:

Essentially an SPN network

#### **DES S-Boxes**

8 different S-boxes, each

- 6-bit input, 4-bit output
- Table lookup: 2 bits specify row, 4 specify column



- Each row contains every possible 4-bit output
- Changing one bit of input changes at least 2 bits of output

# **DES History**

#### Designed in the 1970's

- At IBM, with the help of the NSA
- At the time, many in academia were suspicious of NSA's involvement
  - Mysterious S-boxes
  - Short key length
- Turns out, S-box probably designed well
  - Resistant to "differential cryptanalysis"
  - Known to IBM and NSA in 1970's, but kept secret
- Essentially only weakness is the short key length
  - Maybe secure in the 1970's, definitely not today

# **DES Security Today**

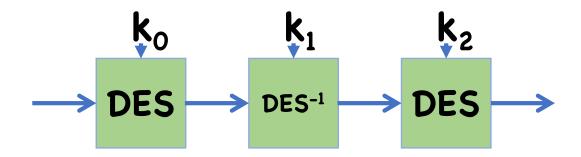
Seems like a good cipher, except for its key length and block size

What's wrong with a small block size?

- Remember for e.g. CTR mode, IV is one block
- If two identical IV's seen, attack possible
- After seeing q ciphertext, probability of repeat IV is roughly q<sup>2</sup>/2<sup>block length</sup>
- Attack after seeing ≈ billion messages

# 3DES: Increasing Key Length

3DES key = Apply DES three times with different keys



Why three times?

 Next time: "meet in the middle attack" renders 2DES no more secure than 3DES
 Why inverted second permutation?

## Limitations of Feistel Networks

Turns out Feistel requires block size to be large

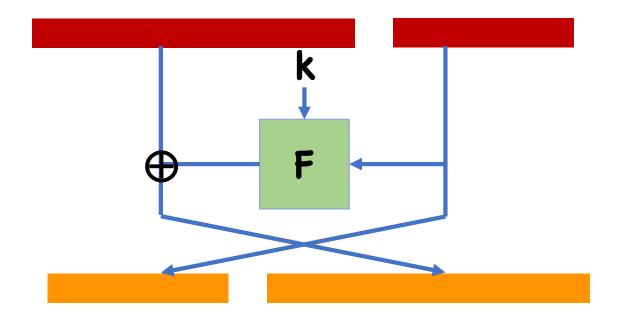
• If number of queries ~2<sup>block size/2</sup>, can attack

Format preserving encryption:

- Encrypted data has same form as original
- E.g. encrypted SSN is an SSN
- Useful for encrypting legacy databases

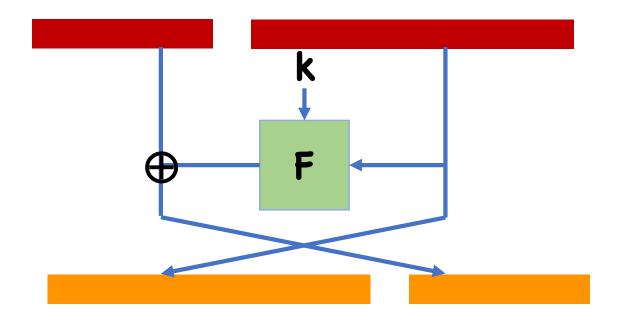
Sometimes, want a very small block size

# Unbalanced Feistel



"Target heavy"

# Unbalanced Feistel



"Source heavy"

### Unbalanced Feistel

Taken to the extreme (where source or target is just 1 bit), one these is insecure, regardless of the round function

#### Which one?

## Next Time

**Attacks on Block Ciphers**