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Last Time

Stream Ciphers

Design of PRGs



Encryption Security Experiment
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Encryption Security Definition

Gefinition: (Enc, Dec) has ciphertext \
indistinguishability if, for all probabilistic
polynomial time (PPT) ©. , there exists a negligible
function € such that
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This Time

Multiple message security
Stateless encryption

Pseudorandom Functions



Multiple Message Security



Left-or-Right Experiment
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LoR Security Definition

Gefinition: (Enc, Dec) has Left-or-Right \
indistinguishability if, for all probabilistic
polynomial time (PPT) ©., there exists a negligible
function € such that

l Pr(1<LoR-Expy( =, 1) ]
\ - Pr{1<LoR-Exp,( =, A) ] I < g(A)

/




Alternate Notion: CPA Security

What if adversary can additionally learn encryptions
of messages of her choice?

Examples:
* Midway Island, WWII:

* US cryptographers discover Japan is planning attack on a
location referred to as “AF”

e Guess that “AF” meant Midway Island

* To confirm suspicion, sent message in clear that Midway
Island was low on supplies

* Japan intercepted, and sent message referencing “AF”



Alternate Notion: CPA Security

What if adversary can additionally learn encryptions
of messages of her choice?

Examples:
 Land mines, WW!II:

 Allies would lay mines at specific locations

* Wait for Germans to discover mine

 Germans would broadcast warning message about the
mines, encrypted with Enigma

* Would also send an “all clear” message once cleared
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Generalized CPA Experiment

Queries in any order
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Equivalences

ﬁl‘ heorem:
Left-or-Right indistinguishability
|7

CPA-security
¢

Generalized CPA-security




Proof

Generalized CPA-security = CPA-security

* Trivial: any adversary in the CPA experiment is also
an adversary for the generalized CPA experiment
that just doesn’t take advantage of the ability to
make multiple Left-or-Right queries



Proof

Left-or-Right > Generalized CPA
e Assume towards contradiction that we have an

adversary & for the generalized CPA experiment

e Construct an adversary “that runs = as a
subroutine, and breaks the Left-or-Right
indistinguishability
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Proof

Left-or-Right > Generalized CPA
| Pr{1€LoR-Expo(gg’ M) ]

- pr[leLoR-Expl( A) ] |

= l Pr{1€GCPA-Exp,( =, 1) ]
- Pr{1<GCPA-Exp,( =, 0] I = g(A)



Proof

(regular) CPA - Left-or-Right

* Assume towards contradiction that we have an
adversary @& for the LoR experiment

* Hybrids! |




Hybrid i:

K € K,

If at most i queries so far,

¢ < Enc(k,m,)

If more than i queries so far,

¢ € Enc(k,m,)




Proof

(regular) CPA - Left-or-Right o
* Hybrid O is identical to LoR-Exp,( &g’

* We know that %” distinguishes Hybrid t+ and
Hybrid O with advantage €
= i s.t. 'distinguishes Hybrid i and
Hybrid i-1 with advantage &/t
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Proof

(regular) CPA - Left-or-Right
I Pr1<CPA-Exp( VN
- Pr{1<CPA-Exp,( u\, A) ] I

= l Pr[lé “in Hybrid i]

- prite & intybridi-1] | = e/t



Equivalences

\

/Theorem:

Left-or-Right indistinguishability
()

J CPA-security
T

Generalized CPA-security
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Therefore, you can use whichever notion you like best



Constructing CPA-secure Encryption

Starting point: A simple randomized encryption
scheme from PRGs:

G
s

Randomly chosen position [ ]




Analysis

As long as the two encryptions never pick the same
location, we will have security

Pr[Collision] < q2/2n, where
* g = humber of messages encrypted
* n = number of blocks

If collision, then no security (“two-time pad”)

For small q, we get small, but non-negligible security



What if...

The PRG has exponential stretch

G
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Prob[collision] is exponentially small L
However, computing PRG takes exponential time




What if...

The PRG has exponential stretch

AND, it was possible to compute any 1 block of
output of the PRG

* In polynomial time

* Without computing the entire output

In other words, given a key, can efficiently compute
the function F(k, x) = G(K),



Pseudorandom Functions

Functions that “look like” random functions

Syntax:

* Key space {0,1}*

e Domain X (usually §0,1}™, m may depend on A)
 Co-domain/range Y (usually §0,1}", may depend on A)
* Function F:{0,1}* x X>Y



Pseudorandom Functions
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Security:




Pseudorandom Functions
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Pseudorandom Functions
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PRF Security Definition

Gefinition: Fisa secure PRF if, for all probabilistic\
polynomial time (PPT) 7} , there exists a negligible
function € such that

| Pri1ePRF-Expo( ), A) ]
- pri1eprF-Exp( ), N 1] <)
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Using PRFs to Build Encryption

Enc(k, m):

* Choose random r< X

 Compute y€F(K,r)

* Compute c<yem Correctness:

* Output (r,c) . y':y since F is deterministic
* m' = CoOy = yomoy = m

Dec(k, (r,c) ):

 Compute ¥y’ €F(k,r)

* Compute and output m’€coy’



Using PRFs to Build Encryption
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Ciphertext = (Il ,lr0)



Security

Theorem: If F is a secure PRF and X is exponentially
large in A (e.g. X={0,1}") , then (Enc,Dec) is CPA-secure




Proof

Assume toward contradiction that there exists a PPT
= and non-negligible € such that ® has advantage
€ in breaking (Enc,Dec)

Hybrids...



Proof

Hybrid O: A b=0

Challenger k € K,

r<X
yéF(k r)
< yem,




Proof

Hybrid 1: A b=

Challenger  H&Funcs(X,Y)

‘: r< X
< yem,
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Proof

Hybrid 2: A b=

Challenger  H&Funcs(X,Y)

‘: r< X
< yem,
|



Proof

Hybrid 3: A b=0

Challenger k € K,

r<X
yéF(k r)
< yem,




Proof

Assume toward contradiction that there exists a PPT
= and non-negligible € such that ® has advantage
€ in breaking (Enc,Dec)

T distinguishes Hybrid O from Hybrid 3 with
advantage € y
= i such that ©distinguishes Hybrid i-1
from Hybird i with advantage €/3



Proof

Suppose 2N distinguishes Hybrid O from Hybrid 1

Construct




Proof

Suppose - distinguishes Hybrid O from Hybrid 1

Construct }} |
. PRF-Exp“O(’Q , N) corresponds to Hybrid O

. PRF-Expl( }I , \) corresponds to Hybrid 1

Therefore, ﬁ has advantage €/3
— contradiction



Proof

Suppose -3 distinguishes Hybrid 1 from Hybrid 2



Proof

Hybrid 1: A b=

Challenger  H&Funcs(X,Y)

‘: r< X
< yem,
|



Proof

Hybrid 2: A b=

Challenger  H&Funcs(X,Y)

‘: r< X
< yem,
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Proof

Suppose -3 distinguishes Hybrid 1 from Hybrid 2

As long as the r’s for every query are distinct, the y's
for each query will look like truly random strings

In this case, encrypting mg vs m; will be perfectly
indistinguishable
* By OTP security



Proof

Suppose -3 distinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is ¢Pr[collision in the r’s]
= PrirV=r(2) or pl=p3) or ... or rlt)zpld+)
or r®=r(3 or ... ]
¢ PrirV=r@)] & Prir=r()] +...+ Prril=rt]
+ Prr®=r(3)] + ..

= (1/IX1) ()
< t2/2IX] “———_ Exponentially small

— contradiction



Proof

Suppose -3 distinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...



Using PRFs to Build Encryption

Enc(k, m):

* Choose random r€< X

 Compute y€F(K,r)

* Compute c€y®m  Correctness:

e Output (r,c) * y’zy since F is deterministic
* m' =COy = yomey = m

Dec(k, (r,c) ):

 Compute ¥y’ €F(k,r)

* Compute and output m’ € coy’



Using PRFs to Build Encryption

So far, scheme had fixed-length messages
* Namely M = Y

Now suppose we want to handle arbitrary-length
messages



Security for Arbitrary-Length Messages
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/Theorem: Given any CPA-secure (Enc,Dec) for A

fixed-length messages (even single bit), it is possible
to construct a CPA-secure (Enc,Dec) for arbitrary-
dength messages

)




Construction

Let (Enc,Dec) be CPA-secure for single-bit messages
* If messages are more than single bit, can always
pad to message length

Enc’(k,m):
Fori=l,..., Iml, run ¢; € Enc(k, m;)
OUtpUt (Cl, ) C|m|)

Dec’(k, (¢, -, €) )
Fori=l,.., |, runm, € Dec(k, c;)
Outputm = mim,....,m,



Proof

Assume toward contradiction that there exists a PPT
= and non-negligible € such that ® has advantage
€ in breaking (Enc’,Dec’)

Construct ‘%\ that has advantage € in breaking
(Enc,Dec)



Proof (sketch)
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Better Constructions Using PRFs

In PRF-based construction, encrypting single bit
requires A+1 bits
= encrypting l-bit message requires =Al bits

Ideally, ciphertexts would have size A+l



Solution 1: Add PRG/Stream Cipher

Enc(k, m):

* Choose random r€< X

« Compute y€F(k,r)

* Get |m| pseudorandom bits z€G(y)
* Compute c€zom

* Output (r,c)

Dec(k, (r,c) ):

* Compute y’'€F(k,r)
 Compute 2’ €G(y’)

« Compute and output m’€&cez’



Solution 1: Add PRG/Stream Cipher




Solution 2: Counter Mode

Enc(k, m):
* Choose random r<{0,1}*/2 Write i as A/2-bit string
* Fori=l,...,Iml,
* Compute y,€F(k,rlli)
* Compute ¢;€y.®m,
* Output (r,c) where c=(c,, ...,Cjm)

Dec(k, (r,c) ):
* Fori=l,...,L,

» Compute y;€F(k,rlli) Handles any message of
* Compute m;€y,ec; length at most 2V/2

* Qutput m=m,,...,m
tree e * Includes all polynomial-
length messages



Solution 2: Counter Mode
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Summary

PRFs = “random looking” functions

Can be used to build security for arbitrary
length/number of messages with stateless scheme



Next Time

Pseudorandom Permutations/Block Ciphers
* PRFs that are permutations



