COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 3 up

Last Time

Stream Ciphers

Design of PRGs

Encryption Security Experiment

Encryption Security Definition

Definition: (Enc, Dec) has ciphertext indistinguishability if, for all probabilistic polynomial time (PPT) , there exists a negligible function ε such that

Pr[1←IND-Exp₀(
$*$
, * , *)]
- Pr[1←IND-Exp₁(* , * , *)] ≤ ε(*)

This Time

Multiple message security

Stateless encryption

Multiple Message Security

Left-or-Right Experiment

LoR Security Definition

Definition: (Enc, Dec) has Left-or-Right indistinguishability if, for all probabilistic polynomial time (PPT) , there exists a negligible function ε such that

Pr[1
$$\leftarrow$$
LoR-Exp₀(\nearrow , λ)]

- Pr[1 \leftarrow LoR-Exp₁(\nearrow , λ)] $\leq \epsilon(\lambda)$

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Midway Island, WWII:
 - US cryptographers discover Japan is planning attack on a location referred to as "AF"
 - Guess that "AF" meant Midway Island
 - To confirm suspicion, sent message in clear that Midway Island was low on supplies
 - Japan intercepted, and sent message referencing "AF"

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Land mines, WWII:
 - Allies would lay mines at specific locations
 - Wait for Germans to discover mine
 - Germans would broadcast warning message about the mines, encrypted with Enigma
 - Would also send an "all clear" message once cleared

CPA Experiment b Challenger **CPA** Query $k \leftarrow K_{\lambda}$ $c \leftarrow Enc(k,m)$ Challenge Query $m_0, m_1 \subseteq M_{\lambda}$ $c \leftarrow Enc(k,m_b)$ m∈M, \leftarrow Enc(k,m) $CPA-Exp_b(^{\circ}, \lambda)$

Generalized CPA Experiment

GCPA-Exp_b(\mathbb{R} , λ)

Equivalences

Theorem:

Left-or-Right indistinguishability

CPA-security

1

Generalized CPA-security

Generalized CPA-security → CPA-security

 Trivial: any adversary in the CPA experiment is also an adversary for the generalized CPA experiment that just doesn't take advantage of the ability to make multiple Left-or-Right queries

Left-or-Right → Generalized CPA

- Assume towards contradiction that we have an adversary for the generalized CPA experiment
- Construct an adversary that runs as a subroutine, and breaks the Left-or-Right indistinguishability

$$Pr[1\leftarrow LoR-Exp_b(\lambda, \lambda)] = Pr[1\leftarrow GCPA-Exp_b(\lambda, \lambda)]$$

Left-or-Right → Generalized CPA

$$Pr[1 \leftarrow LoR - Exp_o(\lambda, \lambda)]$$

=
$$Pr[1 \leftarrow GCPA - Exp_0(^{\sim}, \lambda)]$$

-
$$Pr[1 \leftarrow GCPA - Exp_1(\mathcal{T}, \lambda)] = \epsilon(\lambda)$$

(regular) CPA → Left-or-Right

- Assume towards contradiction that we have an adversary for the LoR experiment
- Hybrids!

Hybrid **i**:

(regular) CPA → Left-or-Right

- Hybrid **O** is identical to LoR-Exp₁(λ)
- Let † be maximum number of queries by († ≤ running time of ≤ polynomial)
- Hybrid † is identical to LoR-Exp₀(, λ)
- We know that $\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){$
 - $\Rightarrow \exists i \text{ s.t.}$ distinguishes Hybrid i and Hybrid i-1 with advantage ϵ/t

(regular) CPA → Left-or-Right

$$Pr[1\leftarrow CPA-Exp_o(\hbar, \lambda)]$$

-
$$Pr[1 \leftarrow in Hybrid i-1]$$
 = ϵ/t

Equivalences

Therefore, you can use whichever notion you like best

Constructing CPA-secure Encryption

Starting point: A simple randomized encryption scheme from PRGs:

Analysis

As long as the two encryptions never pick the same location, we will have security

$Pr[Collision] \le q^2/2n$, where

- q = number of messages encrypted
- **n** = number of blocks

If collision, then no security ("two-time pad")

For small **q**, we get small, but non-negligible security

What if...

The PRG has **exponential** stretch

What if...

The PRG has exponential stretch

AND, it was possible to compute any 1 block of output of the PRG

- In polynomial time
- Without computing the entire output

In other words, given a key, can efficiently compute the function $F(k, x) = G(k)_x$

Functions that "look like" random functions

Syntax:

- Key space **{0,1}**^λ
- Domain X (usually $\{0,1\}^m$, m may depend on λ)
- Co-domain/range Y (usually $\{0,1\}^n$, may depend on λ)
- Function $F:\{0,1\}^{\lambda} \times X \rightarrow Y$

PRF Security Definition

Definition: \mathbf{F} is a secure PRF if, for all probabilistic polynomial time (PPT) \mathfrak{F} , there exists a negligible function $\mathbf{\varepsilon}$ such that

$$Pr[1 \leftarrow PRF-Exp_0(\hat{\lambda}, \lambda)]$$

$$- Pr[1 \leftarrow PRF-Exp_1(\hat{\lambda}, \lambda)] \leq \varepsilon(\lambda)$$

Using PRFs to Build Encryption

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

Security

Theorem: If **F** is a secure PRF and **X** is exponentially large in λ (e.g. $X=\{0,1\}^{\lambda}$), then **(Enc,Dec)** is CPA-secure

Assume toward contradiction that there exists a PPT and non-negligible ε such that \mathbb{R} has advantage ε in breaking (Enc,Dec)

Hybrids...

Assume toward contradiction that there exists a PPT \mathbb{R} and non-negligible ε such that \mathbb{R} has advantage ε in breaking (**Enc,Dec**)

 \mathfrak{F} distinguishes Hybrid 0 from Hybrid 3 with advantage $\boldsymbol{\varepsilon}$

 $\Rightarrow \exists i \text{ such that } \mathcal{T} \text{ distinguishes Hybrid } i-1$ from Hybird i with advantage $\varepsilon/3$

Suppose Tdistinguishes Hybrid 0 from Hybrid 1

Suppose Tdistinguishes Hybrid 0 from Hybrid 1

- Construct (a) \cdot PRF-Exp₀((a), λ) corresponds to Hybrid 0 \cdot PRF-Exp₁((a), λ) corresponds to Hybrid 1

Therefore, $^{\$}$ has advantage $\epsilon/3$ \Rightarrow contradiction

Suppose Tdistinguishes Hybrid 1 from Hybrid 2

Suppose Table distinguishes Hybrid 1 from Hybrid 2

As long as the **r**'s for every query are distinct, the **y**'s for each query will look like truly random strings

In this case, encrypting $\mathbf{m_0}$ vs $\mathbf{m_1}$ will be perfectly indistinguishable

By OTP security

Suppose Rdistinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is
$$\leq \Pr[\text{collision in the } \mathbf{r}'s]$$

= $\Pr[\mathbf{r}^{(1)} = \mathbf{r}^{(2)} \text{ or } \mathbf{r}^{(1)} = \mathbf{r}^{(3)} \text{ or } ... \text{ or } \mathbf{r}^{(1)} = \mathbf{r}^{(d+1)}$

or $\mathbf{r}^{(2)} = \mathbf{r}^{(3)} \text{ or } ...$]

 $\leq \Pr[\mathbf{r}^{(1)} = \mathbf{r}^{(2)}] + \Pr[\mathbf{r}^{(1)} = \mathbf{r}^{(3)}] + ... + \Pr[\mathbf{r}^{(1)} = \mathbf{r}^{(t)}]$
 $+ \Pr[\mathbf{r}^{(2)} = \mathbf{r}^{(3)}] + ...$

= $(1/|\mathbf{X}|) \binom{1}{2}$
 $\leq t^2/2|\mathbf{X}|$

Exponentially small \Rightarrow contradiction

Suppose Tdistinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...

Using PRFs to Build Encryption

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

So far, scheme had fixed-length messages

Namely, M = Y

Now suppose we want to handle arbitrary-length messages

Security for Arbitrary-Length Messages

Theorem: Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

• If messages are more than single bit, can always pad to message length

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

Output m = m_1 m_2 ..., m_l
```

Assume toward contradiction that there exists a PPT and non-negligible ε such that \Re has advantage ε in breaking (Enc', Dec')

Construct \mathbb{A} that has advantage ε in breaking (Enc,Dec)

Proof (sketch)

Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda+1$ bits

⇒ encrypting **l**-bit message requires ≈λ**l** bits

Ideally, ciphertexts would have size ≈λ+l

Solution 1: Add PRG/Stream Cipher

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Get $|\mathbf{m}|$ pseudorandom bits $\mathbf{z} \leftarrow \mathbf{G}(\mathbf{y})$
- Compute c←z⊕m
- Output **(r,c)**

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute $z' \leftarrow G(y')$
- Compute and output m'←c⊕z'

Solution 1: Add PRG/Stream Cipher

Solution 2: Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write \mathbf{i} as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i|)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{lml})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i)$
 - Compute m_i ← y_i⊕c_i
- Output **m=m₁,...,m_l**

Handles any message of length at most $2^{\lambda/2}$

 Includes all polynomiallength messages

Solution 2: Counter Mode

Summary

PRFs = "random looking" functions

Can be used to build security for arbitrary length/number of messages with stateless scheme

Next Time

Pseudorandom Permutations/Block Ciphers

PRFs that are permutations