COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 2 due tomorrow

Grades and comments should be visible on
Blackboard

Last Time

|key| > |total information encrypted| is necessary
for statistical security

Computational Security

PRGs

Encryption Security Experiment

A b
Challenger
“J Mo, MEM, é k < K,
N C j‘f ¢ € Enc(k,m,)
!
bl

Encryption Security Definition

Gefinition: (Enc, Dec) has ciphertext \
indistinguishability if, for all probabilistic
polynomial time (PPT) ©. , there exists a negligible
function € such that

| Pri1€IND-Expy(=,)]
- Pri1€IND-Exp,(., A) 1| < e@)

/

Construction with |k| << |ml

ldea: use OTP, but have key generated by some
expanding function G

Pseudorandom Generators

ﬁefinition: G:{0,1}" > {0,1}" is a secure \

pseudorandom generator (PRG) if:

* G is computable in polynomial time

G applied to A bit strings produces strings of
length +(A) > A

 Gis deterministic

* Forall PPT % , = negl € such that:

| eri i (6(s))=1:5€§0,1)

= prj=txefo 3] | <) /

This Time

Stream Ciphers

Design of PRGs

Pseudorandom Generators

PRGs usually allow for streaming arbitrarily long

sequences of random bits
4 Statey

2

1
state,

state
state

Stream Ciphers

Use “streaming” PRG to encrypt messages
4 state,

/‘i /‘iu/\ ooo
i & &

1
2

sta

state
state

Keystream

I
- Message

key

Stream Ciphers

Use “streaming” PRG to encrypt messages

In this way, can encrypt arbitrarily long messages
* security proof similar to last time

But remember, stream ciphers are really just OTP’s,
so still cannot encrypt twice with the same part of
keystream

Instead, encrypt like we did with the one-time pad

Multiple Messages with Stream Ciphers

Multiple Messages with Stream Ciphers

Limitations of Stream Ciphers

Just like with OTP, need to be careful because
communication may be asynchronous

» Keep a different key/state for each direction of
communhnication

Here, even bigger problem cause by out of order
messages

Multiple Messages with Stream Ciphers

Multiple Messages with Stream Ciphers

Multiple Messages with Stream Ciphers

ST

Multiple Messages with Stream Ciphers

Multiple Messages with Stream Ciphers

state, ; key

g; el
. ;J%\) a . S%;hj
* i ' BN
J

Bob needs to either:
e Store entire keystream until he receives message 1

 Orre-compute keystream from scratch every message

state,,

il

0

Multiple Messages with Stream Ciphers

Out of order messages cause implementation
difficulties

Mitigation?
* Self-synchronizing stream cipher

Selt-Synchronizing Stream Ciphers

“state” is just (last several ciphertext bits seen, key)

key

Thus, you can always decrypt if the last several
ciphertext bits were correct

How do we build PRGs?

Linear Feedback Shift Registers

In each step,
e Last bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 1 0 |

— 0

Linear Feedback Shift Registers

In each step,

ast bit of state is removed and outputted
Rest of bits are shifted right

First bit is XOR of subset of remaining bits

T |
0 1 | (0 \
n

Linear Feedback Shift Registers

In each step,

ast bit of state is removed and outputted
Rest of bits are shifted right

First bit is XOR of subset of remaining bits

T |
0 1 | (0 \
n

Linear Feedback Shift Registers

In each step,
* |ast bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 0 | 1 \
1]o0

Linear Feedback Shift Registers

In each step,
* |ast bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 0 | 1 \
1]o0

— 0

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 | 0 | \
1]o[1

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 | 0 | \
1]o[1

— 0

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 (0 | 0 \
1]o[1]1

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 (0 | 0 \
1]o[1]1

— 0

Linear Feedback Shift Registers

Are LFSR’s secure PRGSs?
No!

First n bits of output = initial state

/ Write x - x1'uo’xn' x'
X

Initialize LFSB to have state Xy, ...,X,

Run LFSB for Ix| steps, obtaining y
Checkify = X

=

PRGs should be Unpredictable

More generally, it should be hard, given some bits of
output, to predict subsequent bits

/Definition G is unpredictable if, for all \
probabilistic polynomial time (PPT),# and any
polynomial p, there exists a negllglble function €
such that

| PricE)m < <)

PRGs should be Unpredictable

More generally, it should be hard, given some bits of
output, to predict subsequent bits

Theorem: G is unpredictable iff it is pseudorandom

Proof

Pseudorandomness = Unpredictability

Assume towards contradiction PPT .4, polynomial

P, non-negligible function € s.t.

| PriG(s) 01 € PG 1 - % | =€)

(2

Proof

Pseudorandomness = Unpredictability

Construct ﬁt

Proof

Pseudorandomness =2 Unpredictability

Analysis:
* If X is random, Pr[18b®x), = 1] = %
* If X is pseudorandom,
Pr[leab@xp(,\),d = 1]
= PF[G(S)P(A)H <
=% + €(A)

(2

,.\;\"*tx~/(G(s)[l,p()\)])]

Proof

Unpredictability 2 Pseudorandomness

Assume towards contradiction PPT ﬁv non-
negligible function € s.t. |

| prl fi(6(s)=1:s€40,17]
- prl j()=1:x<f0,13] | =)

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {O,l}f"

H,: truly random X
H.: pseudorandom t

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {0,1}1"'

| prl jj=1:xH,]
- prl f =txeho] | =)

Letq; = Pl (x)=l:x€H;]

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {0,1}1"'

| 9+ = qo | = &)

Letq; = Pl (x)=l:x€H;]

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {O,l}f"

By triangle inequality, there must exist an i s.t.

| qi = qi; | 2 e(A)/t

Can assume wlog that

qi - qi.; 2 e(A)/t

Proof

Unpredictability 2 Pseudorandomness

Construct . o

D
Q
wn
~r
x
0
a

Proof

Unpredictability 2 Pseudorandomness

Analysis:

*Ifb = G(s), then Jj sees H,
:>j outputs 1 with probability q;
4P outputs b=G(s), with probability g,

Proof

Unpredictability 2 Pseudorandomness

Analysis:
*Ifb = I@G(S)i, then |
Define q;" as Pr| E outputs 1]

% + q) =g = g =29, - g
4" outputs G(s)[l'i] with probability
1-q/ = 1 + q; - 2q;,

Proof

Unpredictability 2 Pseudorandomness

Analysis:
4 outputs G(s);]

=%(q) +% (1 +q - 2q.,)
=%+ q - Qi
> % + g(\)/t

Linearity

Linearity

LFSR’s are linear:

T—F |
1 |1 O l\

— 0

state’ = (

output = (0 0 0 0 1) e state

e state

oo ol e
OO~ Owm
O OO0
- O 00O
Q00O

Linearity

LFSR’s are linear:
* Each output bit is a linear function of the initial

state (thatis, G(s) = A e s (mod 2))

Any linear G cannot be a PRG
* Can check if X is in column-span of A using linear

algebra

Introducing Non-linearity

Non-linearity in the output:

fany

Non-linear feedback:

FTTTT R

LFSR period

Period = number of bits before state repeats
After one period, output sequence repeats
Therefore, should have extremely long period

* |deally almost 2"
 Possible to design LFSR’s with period 2"-1

Hardware vs Software

PRGs based on LFSR’s are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG
Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers
* Permutation stored as 256-byte array S

Init(16-byte K):

* Fori=0,...,255
Sli] =i

-j=0

* For i=0,...,255
j=J + S[i] + k[i mod 16] (mod 256)
Swap S[i] and S[j]

e Output (S,0,0)

RC4

GetBits(S,i,j):

* i++ (mod 256)

° j-l-: S[l] (mod 256)

* Swap S[i] and S[j]

*t = S[i] + S[j] (mod 256)
* Output (S,i,j), S[t]

SN

New state Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0
* Prlsecond byte = 08] = 2/256
* Should be 1/256

Means RC4 is not secure according to our definition
. it outputs 1 iff second byte is equal to 08
 Advantage: = 1/256

Not a serious attack in practice, but demonstrates
some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the
input K in some use cases
* The seed is set to (IV, k) for some initial value IV

* Encrypt messages as RC4(IV,k)em
* Also give 1V to attacker
e Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption
standard

Extending the Stretch of a PRG

Suppose you have a fixed-stretch PRG G
» Better yet, a PRG that expands by a single bit

G: {0,1} > {0,1}+

Construct a PRG G’ of arbitrary output length

Extending the Stretch of a PRG

Security Proof

Assume towards contradiction PPT &, non-negligible €...

Define hybrids...

Security Proof

H.:
" {01

]]]
\ J

|

i

Security Proof

{0,1}"

Security Proof

H.:
¢ {0,1p
4

state, 4 state;

Security Proof

H;:

Security Proof

H, corresponds to pseudorandom X
H; corresponds to truly random X
Let q; = Pr[E(x):l:xél—li]

By assumption, |q; = qol = €(A)

= i st lq, = qyl = e(\)/t

Security Proof

Security Proof

Analysis
* Ify = G(s), thenﬁL sees H;_,

= Pr[ﬂ outputs 1] = q;_,
= Pr[goufpui's 1] = q;,

N

* If y is random, thenﬁL

= Prl ﬂ outputs 1] = q;
= Pr[@oufpu’rs 1] = q;

sees H;

Summary

Stream ciphers = secure encryption for arbitrary
length, number of messages
(though we did not completely prove it)

However, implementation difficulties due to having
to maintaining state

Next Time

Stateless encryption for arbitrary messages

Pseudorandom Functions (PRFs)

