COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 2 due tomorrow

Grades and comments should be visible on Blackboard

Last Time

|key| ≥ |total information encrypted| is necessary for statistical security

Computational Security

PRGs

Encryption Security Experiment

Encryption Security Definition

Definition: (Enc, Dec) has ciphertext indistinguishability if, for all probabilistic polynomial time (PPT) , there exists a negligible function ε such that

Pr[1←IND-Exp₀(
$*$
, * , *)]
- Pr[1←IND-Exp₁(* , * , *)] ≤ ε(*)

Construction with | k | << | m |

Idea: use OTP, but have key generated by some expanding function **G**

Pseudorandom Generators

Definition: $G:\{0,1\}^* \rightarrow \{0,1\}^*$ is a **secure pseudorandom generator** (PRG) if:

- G is computable in polynomial time
- **G** applied to λ bit strings produces strings of length $\mathbf{t}(\lambda) > \lambda$
- **G** is deterministic
- For all **PPT** λ , \exists **negl** ϵ such that:

$$Pr[\lambda (G(s))=1:s\leftarrow\{0,1\}^{\lambda}]$$

$$-Pr[\lambda (x)=1:x\leftarrow\{0,1\}^{\dagger(\lambda)}] \leq \epsilon(\lambda)$$

This Time

Stream Ciphers

Design of PRGs

Pseudorandom Generators

PRGs usually allow for streaming arbitrarily long sequences of random bits

Stream Ciphers

Use "streaming" PRG to encrypt messages

Stream Ciphers

Use "streaming" PRG to encrypt messages

In this way, can encrypt arbitrarily long messages

security proof similar to last time

But remember, stream ciphers are really just OTP's, so still cannot encrypt twice with the same part of keystream

Instead, encrypt like we did with the one-time pad

Limitations of Stream Ciphers

Just like with OTP, need to be careful because communication may be asynchronous

 Keep a different key/state for each direction of communication

Here, even bigger problem cause by out of order messages

Bob needs to either:

- Store entire keystream until he receives message 1
- Or re-compute keystream from scratch every message

Out of order messages cause implementation difficulties

Mitigation?

Self-synchronizing stream cipher

Self-Synchronizing Stream Ciphers

"state" is just (last several ciphertext bits seen, key)

Thus, you can always decrypt if the last several ciphertext bits were correct

How do we build PRGs?

- Last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

Are LFSR's secure PRGs?

No!

First **n** bits of output = initial state

Write $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}'$ Initialize LFSB to have state $\mathbf{x}_1, \dots, \mathbf{x}_n$ Run LFSB for $|\mathbf{x}|$ steps, obtaining \mathbf{y} Check if $\mathbf{y} = \mathbf{x}$

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Definition: G is unpredictable if, for all probabilistic polynomial time (PPT) and any polynomial p, there exists a negligible function ε such that

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Theorem: G is **unpredictable** iff it is **pseudorandom**

Proof

Pseudorandomness → Unpredictability

Assume towards contradiction PPT \mathfrak{p} , polynomial \mathfrak{p} , non-negligible function \mathfrak{e} s.t.

$$Pr[G(s)_{p(\lambda)+1} \leftarrow \mathscr{F}(G(s)_{[1,p(\lambda)]})] - \frac{1}{2} = \varepsilon(\lambda)$$

Proof

Pseudorandomness → Unpredictability

Pseudorandomness > Unpredictability

Analysis:

- If x is random, $Pr[1 \oplus b \oplus x_{p(\lambda)+1} = 1] = \frac{1}{2}$
- If **x** is pseudorandom,

$$Pr[1 \oplus b \oplus x_{p(\lambda)+1} = 1]$$

$$= Pr[G(s)_{p(\lambda)+1} \leftarrow \mathcal{F}(G(s)_{[1,p(\lambda)]})]$$

$$= \frac{1}{2} \pm \epsilon(\lambda)$$

Unpredictability → Pseudorandomness

Assume towards contradiction PPT λ , non-negligible function ϵ s.t.

$$Pr[λ(G(s))=1:s←{0,1}λ] - Pr[λ(x)=1:x←{0,1}†(λ)] = ε(λ)$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

 H_0 : truly random x

H_t: pseudorandom **†**

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$Pr[\lambda(x)=1:x\leftarrow H_s]$$

$$-Pr[\lambda(x)=1:x\leftarrow H_0] = \epsilon(\lambda)$$

$$Let q_i = Pr[\lambda(x)=1:x\leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$| q_t - q_0 | = \varepsilon(\lambda)$$

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

By triangle inequality, there must exist an i s.t.

$$| q_i - q_{i-1} | \ge \varepsilon(\lambda)/t$$

Can assume wlog that

$$q_i - q_{i-1} \ge \varepsilon(\lambda)/t$$

Unpredictability → Pseudorandomness

Construct **

Unpredictability → Pseudorandomness

Analysis:

- If $\mathbf{b} = \mathbf{G}(\mathbf{s})_i$, then \mathbf{k} sees \mathbf{H}_i
 - \Rightarrow outputs **1** with probability $\mathbf{q_i}$
 - \Rightarrow outputs **b=G(s)**_i with probability **q**_i

Unpredictability → Pseudorandomness

Analysis:

• If $\mathbf{b} = \mathbf{1} \oplus \mathbf{G}(\mathbf{s})_i$, then Define \mathbf{q}_i as $\mathbf{Pr}[]_i$ outputs $\mathbf{1}]$ $\frac{1}{2}(\mathbf{q}_i' + \mathbf{q}_i) = \mathbf{q}_{i-1} \Rightarrow \mathbf{q}_i' = 2\mathbf{q}_{i-1} - \mathbf{q}_i$ $\Rightarrow \mathbf{q}_{i-1} \Rightarrow \mathbf{q}_{i$

Unpredictability → Pseudorandomness

Analysis:

• Pr[outputs $G(s)_{i}$]

= $\frac{1}{2} (q_{i}) + \frac{1}{2} (1 + q_{i} - 2q_{i-1})$ = $\frac{1}{2} + q_{i} - q_{i-1}$ ≥ $\frac{1}{2} + \epsilon(\lambda)/t$

Linearity

Linearity

LFSR's are linear:

Linearity

LFSR's are linear:

Each output bit is a linear function of the initial state (that is, G(s) = A ● s (mod 2))

Any linear **G** cannot be a PRG

Can check if x is in column-span of A using linear algebra

Introducing Non-linearity

Non-linearity in the output:

Non-linear feedback:

LFSR period

Period = number of bits before state repeats

After one period, output sequence repeats

Therefore, should have extremely long period

- Ideally almost 2ⁿ
- Possible to design LFSR's with period 2ⁿ-1

Hardware vs Software

PRGs based on LFSR's are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG

Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers

Permutation stored as 256-byte array S

```
Init(16-byte k):
    For i=0,...,255
        S[i] = i
    j = 0
    For i=0,...,255
        j = j + S[i] + k[i mod 16] (mod 256)
        Swap S[i] and S[j]
    Output (S,0,0)
```

RC4

```
GetBits(S,i,j):

• i++ (mod 256)

• j+= S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• Output (S,i,j), S[t]
```

New state

Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0

- $Pr[second byte = 0^8] \approx 2/256$
- Should be 1/256

Means RC4 is not secure according to our definition

- a outputs 1 iff second byte is equal to 08
- Advantage: ≈ 1/256

Not a serious attack in practice, but demonstrates some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the input **k** in some use cases

- The seed is set to (IV, k) for some initial value IV
- Encrypt messages as RC4(IV,k)⊕m
- Also give IV to attacker
- Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption standard

Extending the Stretch of a PRG

Suppose you have a fixed-stretch PRG G

• Better yet, a PRG that expands by a single bit G: $\{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda+1}$

Construct a PRG **G'** of arbitrary output length

Extending the Stretch of a PRG

Define hybrids...

H_t:

 H_0 corresponds to pseudorandom x

H_t corresponds to truly random **x**

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

By assumption, $|\mathbf{q}_{t} - \mathbf{q}_{0}| = \varepsilon(\lambda)$

$$\Rightarrow \exists i \text{ s.t. } |q_i - q_{i-1}| = \epsilon(\lambda)/t$$


```
Analysis
• If y = G(s), then sees H_{i-1}
        \Rightarrow Pr[\hat{n} outputs 1] = q_{i-1}
        \Rightarrow \Pr[\mathcal{E}_{outputs 1}] = q_{i-1}
```

- If **y** is random, then sees **H**_i \Rightarrow Pr[λ outputs 1] = q_i
 - \Rightarrow Pr[@outputs 1] = q_i

Summary

Stream ciphers = secure encryption for arbitrary length, number of messages (though we did not completely prove it)

However, implementation difficulties due to having to maintaining state

Next Time

Stateless encryption for arbitrary messages

Pseudorandom Functions (PRFs)