COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 2 posted, due Feb 21

Last Time

Multiple message security

Statistical Secrecy

Unfortunately, for everything we’ve looked at so far,
|key| > |total information encrypted|

Today

|key| > |total information encrypted| is necessary
for statistical security

Computational Security

Stream Ciphers and PRGs

Notation

For a probabilistic algorithm A, we write A(x; r) to

denote running A on input X, using randomness r

* When thought of as a function of its input and
randomness, A is deterministic

Statistical Secrecy

/Definition: A scheme (Enc,Dec) has statistical secrecy\
for n messages if T negligible function € s.t. ¥V two
sequences of messages (My™)icry » (M) icim € M

A[(EﬂC(K;\, mo(i)))iE[n]'

(EnC(KM ml(i)))ie[n]] < E(A)
- /

Kl'heorem: Suppose (Enc,Dec) has plaintext space M, A
= {0,1}"W and key space K, = {0,1}*™). Moreover,
assume it is statistically secure for d messages. Then:

t(A) 2 d n(A)
_ /

In other words, the key must be at least as long as
the total length of all messages encrypted

Proof Idea

Use an encryption protocol to build a compression
protocol

/;}m

. ‘ﬁ‘ m,

A |

>

m’ € Comp(m) m < Decomp(m’)

Goal: Im’| < Iml|

For Now: Easier Goal

S s € Setup()

m < Decomp(s,m’)

m’ € Comp(s,m)

Goal: |m’| < |ml|

The Protocol

Let my, be some message in M,

Setup():
* Choose random K, €K
* Let ¢;€<Enc(ky,mg), ..., c4€Enc(ky,my)

» Output (c,,...,C4) In M,
/ A

Comp((c,,...,€4), (My,...,my)):

* Find Kk,ry,...,ry such that ¢;=Enc(k,m;; r;) Vi
* |f no such values exist, abort

* Output K

The Protocol

Let my, be some message in M,
d
/ In MA
Comp((cy,...,€4), (My,....m,)): .
* Find k,rl,...,rd such that C|=EnC(k,m|; r|) \VI|
* |f no such values exist, abort
* Output K

Decomp((c,,...,.€4), K):
* Compute m, = Dec(k,c;)
* Output (my,...,my)

Analysis of Protocol

If Comp succeeds, Decomp must succeed by
correctness
* Since ¢;=Enc(k,m;; r.), Dec(k,c;) must give m,

Therefore, must figure out when Comp succeeds

" Claim: There exists a negligible function (A) such that, :

for any sequence of messages my,...,my, Comp succeeds

kwith probability at least 1-g(A))

(Probability over the randomness used by Setup())

"

"Claim: There exists a negligible function €(A) such that,
for any sequence of messages m,...,my, Comp succeeds
with probability at least 1-g(A)

~

)

Proof:

* Suppose Comp succeeds with probability 1-p for
messages my,...,My

* Let A(c,,...,C4) be the algorithm that runs
Comp((c,,...,c4), (m,,...,m,)) and outputs 1 if
Comp succeeds

* If ¢; = Enc(ky,m;), then PriA(cy,...,c4)=1] = 1
cIf ¢ = Enc(ko,mo), then Pr[A(Cl,...,Cd)zl] = l-P

* By statistical security of Enc, p must be negligible

"Claim: There exists a negligible function €(A) such that, h

for any sequence of messages m,...,my, Comp succeeds

\With probability at least 1-g(A))

P . - .
Claim: There exists a negligible function €(A) such that,
for a random sequence of messages my,...,my, Comp

\succeeds with probability at least 1-g(A))

(Probability over the randomness used by Setup()
and the random choices of m,,...,my)

Next step: Removing Setup

We know:

. (c)....C4) € Setup(),
Pr[Comp succeeds: m €M,] > 1-g(A)

Therefore, there must exist some (¢,*,...,¢4) such
that

Pr(Comp succeeds: m;€M,] 2 1-g(A)

Define: M,’ = {(m,,...,m,): Comp succeeds}
* Note that IM,’| 2 (1-g(A)) |M,|d

The Protocol

| ﬁ;}%mEMA'
W . k
[g
L
Find K,ry,...,r4 such that For each i,
¢,*=Enc(k,m;. r;) Vi Let m;<Dec(k,c;*)

Output (my,...,m,)

By previous analysis,
* Alice always successfully compresses
* Bob always successfully decompresses

Final Touches

Can compress messages in MA' into keys in K,

Therefore, it must be that [M,’| < IK,|

Meaning t = log IK,|
2 log IM)’I
2 log [(1-g(A)) IMm;le)
= d log IM,| + log [1-g(A)]
>dn - 2¢(A)
>dn (as long as e(A)<%)

Takeaway

If you don’t want to physically
exchange keys frequently, you cannot
obtain statistical security

So, now what?

Computational Security

If it takes a billion years to decrypt the message,
that’s ok

How long is okay?

* Practitioner: 280, 2128 or maybe 22°® computational
steps

* Theorist? superpolynomial

Defining Security

Consider an attacker as a probabilistic polynomial

time algorithm (Turing machine)

* Cobham's thesis: captures anything computable in
the real world

Attacker gets to choose the messages
All attacker has to do is distinguish them

Our impossibility gives an exponential-time
algorithm — attack doesn’t apply in this setting

Defining Security

Efficiency of algorithms
* Doesn’t make sense to allow (Enc, Dec) to run in

superpoly time, but not the adversary
* Therefore, all algorithms are also poly time

(efficient)

Security Experiment/Game

/ A \ |
Challenger
u My, M EM, R é k € Ky
1\ . c ff ¢ € Enc(k,m,)
bl

Security Definition

Gefinition: (Enc, Dec) has ciphertext
indistinguishability if, for all probabilistic
polynomial time (PPT) ., there exists a negligibl
function € such that

| Pr{1€IND-Expy(=, A)]
L - Pr1<IND-Exp,(£, A)] | < g(A

~

S

&

Construction with |k| << |ml

ldea: use OTP, but have key generated by some
expanding function G

What Do We Want Out of G?

Gefinition: G:{0,1}* > {0,1}" is a secure

pseudorandom generator (PRG) if:

G is computable in polynomial time

G applied to A bit strings produces strings of
length s(A) > A

e Gis cetermi%stic

 Forall PPT &

» = negl & such that:

| erlj (6(s)=1:s€{0,11]

\ - Pr ﬂ(x):l:xé{o,l}sm] | < E(W

N

Secure PRG =2 Ciphertext Indistinguishability

K, = {0,1}*
M)\ = {OII}S(A)
CA = {OII}S(A)

Enc(k,m) = PRG(K) © m
Dec(k,c) = PRG(k) @ ¢

Security?

Intuitively, security is obvious:
* PRG(k) “looks” random, so should completely hide m
* However, formalizing this argument is non-trivial.

Solution: reductions
e Assume toward contradiction an adversary for the
encryption scheme, derive an adversary for the PRG

Security

)
- -]

Assume towards contradiction that there is a PPT 1 -
such that

k€ K,
€ € G(k)em,

IPr[W,]-Pr[W,]l2g(7), non-negligible
W,: b’ = 1 in IND-Exp,

Security

® .
Use 1\ to bwldﬁ ﬁ will run ! \as a subroutine,

and pretend to be g

< : X
(either'G(s) or truly random)

b € {0,1}
c € xem,

_J =
@ Mo MEM,

\’\4 C

Security

Case 1: X = PRG(s) for arandom seed s
+ £ “sees” IND-Exp, for a random bit b

@ Mo MmEM, b € {0,1}
1\ C s € K,
N ¢ € PRG(s)em,

Security

Case 1: X = PRG(s) for arandom seed s
+ £ “sees” IND-Exp, for a random bit b
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1]
+ % (1 - Pr[b’=1 | b=0))
= %(1 + Pr(W,] - Pr{w,])
=%(1%¢e(A))

Security

Case 2: X is truly random

« & “sees” OTP encryption

@ Mo MmEM, b € {0,1}
I\ ¢ x € {0,1}sM
- c € xem,

Security

Case 2: X is truly random

J
@

e 7. “sees” OTP encryption
* Therefore Pr[b’=1 | b=0] = Pr[b’=1 | b=1]
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1]
+ % (1 - Pr[b’=1 | b=0))
=%

Security

Putting it together:

- Prl Jj (S(s)=L:s€{0,11] = %(1 £ £A))
« Prl J(x)=1:x€{0,130] = %

* Absolute Difference: %€(A), non-negligible
— Contradiction!

An Alternate Proof: Hybrids

ldea: define sequence of “hybrid” experiments
“between” IND-ExXp, and IND-EXp,

In each hybrid, make small change from previous
hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from IND-
Expo and IND-Exp, is undetectable

An Alternate Proof: Hybrids

Hybrid 0: IND-Exp,

“J mo' mlEMA k < K;\
LW ¢ ¢ € G(K)em,

An Alternate Proof: Hybrids

Hybrid 1:

@ Mo MEM, x € {0,1}(™
1\ c c € xom,

An Alternate Proof: Hybrids

Hybrid 2:

@ Mo MEM, x € {0,1}(™
1\ c c € xom,

An Alternate Proof: Hybrids

Hybrid 3: IND-Exp,

“J mo' mlEMA k < K;\
LW ¢ ¢ € G(K)em,

An Alternate Proof: Hybrids

| Pr[b’=1 : IND-ExpO]-Pr[b'=l : IND"EXP1] I
= | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 3] |
¢ | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 1] |

+ | Pr[b’=1 : Hyb 1]-Pr[b’=1 : Hyb 2] |
+ | Pr[b’=1 : Hyb 2]-Pr[b’=1 : Hyb 3] |

If |Pr[b’=1:IND-Exp,]-Pr[b’=1:IND-Exp,]I2(7),
Then for some i=0,1,2,

|Pr[b’=1:Hyb i]-Pr[b’=1:Hyb i+1]| > (A)/3

An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 0 from Hybrid 1
with advantage €(A)/3

k € K, x € §0,1}s™
@ Mo MmEM, @ Mo MmEM,
] l\{C < G(k)®mo /\<C < x@mo

b’ b’

An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 0 from Hybrid 1

with advantage €(A)/3 — Construct ﬂt

X

(s) or truly random)

<
(either

c € xem,

N I BN IS B S S . m E s e .

——_—_—_—_—_—_—_—_—_—_d

An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 0 from Hybrid 1

with advantage €(A)/3 = Construct ﬂt

If
If

L is given G(s) for a randoms, & sees Hybrid 0

L is given x for a random X, &. sees Hybrid 1

Therefore, advantage ijL is equal to advantage of -2
which is at least €(A)/3 = Contradiction!

An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 1 from Hybrid 2
with advantage €(A)/3

x € {0,1}s™ x € {0,1}W
@ Mo MmEM, @ Mo MEM,
L\ < xemg LN L € xom,

b’ b’

An Alternate Proof: Hybrids

Suppose = distj from Hybrid 2

with advanta

x < {0,1}sW

) \ X®ml

An Alternate Proof: Hybrids

Suppose . distinguishes Hybrid 2 from Hybrid 3
with advantage €(A)/3

x € {0,1}® kK € K,
@ ™ mM @ ™ meM
L\ £ € xem, 1\ c € 6(kjem,

1' { Proof essentially identical to }
b Hybrid O/Hybrid 1 case

PRG Discussion

Do we need to restrict to PPT ﬁt?
| YES!

Reason:
* Impossibility for statistically secure encryption gives

exponential-time adversary © .. Apply reduction to
get exponential-time l

PRG Discussion

Do we need to restrict to PPT it?

YES!
Reason:
* More obvious: Brute force attack
For each s in {0,1}: x

If G(s) = x, outputl

<
ither G(s trul d
If nos found, output O [either G(s) or truly random}

PRG Discussion

For each s in {0,1}:
If G(s) = x, output 1
If nos found, output O

X

<
(either G(s) or truly random)

If x = G(s) for random s, will always output 1

If X is truly random, will output 1 with probability at

most 2MsN) ¢ ¥

« 2s(N) possible values of X, only €25 possible
values of G(s)

“Bergofsky Principle” “AN BRHWN

(Not a real principle) DIGITAL .
FURTRESS

/(False) Bergofsky Principle: you can brute

-

force any cryptosystem to learn the key

Can you think of an example that contradicts this?

Brute Forcing OTP?

Say | see the ciphertext
ciphertext: AKFLRKATEOMH

| try all keys, and | see that
key: ARMLPAAABOQU
message: attackatdawn

s this the right key/message? Who knows...

key: ARMLPAAABUVX
message: attackatdusk

When Is Brute Force Possible?

Possible:

* PRGs

* Shift cipher (unlikely two shifts give valid English)
 Substitution cipher

* Encryption where |key|<|message|

Impossible:
* OTP
* Anything else? Anagrams

“Bergofsky Principle” "AN BRUWN

(Not a real principle) m[;"m.
FURTRESS

/If you want to find a secret from a finite set,
and if given a candidate secret from that set
it is possible to tell if the secret is correct,
then you can always find the secret given
enough time.

\J

Do PRGs Exist?

If P=NP, the answer is NO
e Language L = {x: 3s, G(s)=x}
* § is an efficiently verifiable witness that x &L
* Therefore, L € NP
* If P=NP, can decide L in polynomial time
= break PRG security of G

Do PRGs Exist?

Therefore, we need to at least assume P#NP
Fortunately, most people believe P£NP

But, huge open question:
Can we build PRGs assuming P£NP?

Big difficulty:
P#£NP is a worst case assumption, whereas
PRGs are average case

Does Crypto Exist?

In most cases, crypto requires P#NP
* We can usually efficiently check if a key is correct
* Therefore, if P=NP, we can also find the key in

efficiently
* There are some exceptions: notable example is OTP

However, most crypto seems to require something

stronger
Again, P#NP is worst case, whereas most

crypto definitions are average case

P#£NP is necessary but not
sufficient for most crypto

Assumptions in Cryptography

For most crypto, will need to make certain
computational assumptions

e E.g. that Gis a PRG

Obviously, unsatisfying state of affairs

To gain confidence in assumption, need to perform
extensive cryptanalysis

Assumptions in Cryptography

To gain confidence in assumption, need to perform
extensive cryptanalysis

* Expensive and time consuming

|deally, we would only do this once
* Don’t want to have to perform cryptanalysis every
time we design a new scheme

Provable Security

Major goal in cryptography:

Use one component (e.g. PRG) for many
cryptographic tasks (e.g. Encryption), with security
proof assuming just the security of the component

When we say to “prove” security, we mean relative
to the assumption that building block is secure

Exactly what this means should generally be clear
from context

summary

Computational assumptions crucial to cryptography

First building block: PRGs
* Use to build encryption where | key| << | message]|

Security proofs by reduction
* Hybrid arguments

Next Time

Stream Ciphers

Some design principles behind PRGs

