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Final Details

About same length as midterm

Pick any 72 hour period during the dates May 17 —
May 22

* Don’t look at the final before your 72 hour period
* Email us when you first download the exam

Individual, but open notes/slides/internet...



Office Hours

No more Monday OH

During reading period/finals, OH will be by
appointment



Today

CCA-secure PKE without random oracles

Secret sharing

Beyond COS433



Injective Trapdoor Functions

Domain X, range Y

Gen(): outputs (pk,sk)
F(PK,XEX) = YE€Y, deterministic
F-i(sk,y) = x

Correctness:

Pr[ F-i(sk, F(pk, x)) = x : (pk,sk)<Gen() ] =1

Correctness implies F is injective



Trapdoor Permutation Security

(sk,pk)<Gen()
X € X
y <F(pK,x)




Injective TDFs from DH

Notation:

Let AE Zp"""
gA S ann’ (gA)i'j = gAi,j

Let HEG™N, VELS
H'eG", (HY),:= T; H,; ;%

Note: ((g)¥); = T; ghiivi = gi*¥)i, so (g*)v=g*"



Injective TDFs from DH

Notation:

Let hEG", AEZq"""
Ahegn, (Ah); := TT; hjhil
Mg')?

(Ag"); = Ty ghidvi = g\Avi, so A(g¥)=gh"



Injective TDFs from DH

Gen(): choose random A<Z ™
sk =A, pk =H =g"

F(Pkl XE{O,I}") = H* (= QA'X)

F-i(sk, h): y& A'h (= g*** = g* )

Then Dlog each component to recover X



Matrix DH Problems

Recall the DDH definition:
(9.9°%.g9°9%) =. (9.9°9°9°)

Write as matrix:

(bab R, ;2)

g



Matrix DH Problems

A B
g Y g

(A€ L") (B random
rank 1 matrix)

Theorem: If DDH holds, the matrix DH problem is
hard for any n




Lossy Trapdoor Functions

Gen;,;(): outputs (pk,sk)
Gen,,(): outputs pk

F(pk,xEX) = yEY, deterministic
F-1(sk,y) = x

Correctness:

Pr[ F-i(sk, F(pk, x)) = x : (pk,sk)€<Gen;;;() ] =1

If pk€Gen,((), then F(pk, - )is “lossy”



Lossy Trapdoor Functions

Security: injective and lossy public keys are
indistinguishable

Precisely:

pk: (pk,sk)€Gen;;() =. pk: pk€Geny()



Lossy TDFs from DH

Gen,,;(): choose random Aézq"""
sk =A, pk =H =g"

Gen,(): Choose random rank-1 AEZ,™
Pk = H = g

F(pk, x={0,1}") = H* (= g**)
F-i(sk, h): y& Ah (= ghAx = g~ )

Then Dlog each component to recover X

[Theorem: DDH =» Matrix DDH = security




Lossy Functions

Suppose H = g? for rank-1 matrix A

What is the image of F(pk, x ) = HX?



Lossy Trapdoor Functions

Injective Mode Lossy Mode

~

C

F(pk, - ) where F(pk, - ) where
(pk.sk)€Gen;,;() pk<Gen,,()



Lossy Trapdoor Functions

LTDFs are also Injective TDFs

* In injective mode, there exists a unique pre-image
for any image point

* In lossy mode, many collisions, so given F(pk, X),
impossible to find X

* Therefore, if possible to invert, then possible to
distinguish injective from lossy:

e Sample random X

* Run inverter ony = F(pk,x)
* Check if output x’ = x



CPA-Secure PKE from Inj. TDFs

Let h be a hardcore bit for the one-way function

x>F(pk,x)
Enc(pk,b) = F(pk,r), h(r)eb
Constructing Inj. TDFs with hardcore bits?

* F'(pk, (r,x) ) = (r, F(pk,x))
* h(r,x) = reb



CPA-Secure PKE from LTDFs

Can actually encrypt many bits at once

Ingredients:
* LTDF (Gen;,;,Gen,,,G,G™)
* Pairwise independent hash function family H

( ICo-domain(H)| << llossy rangel| )



CPA-Secure PKE from LTDFs

Gen():
(pk.sk)€Gen;,;()
h<H

Enc((pk,h),m):
r<X
c, €F(pk,r)
¢, <h(r)em
Output (¢,,¢,)



Min-entropy

/Definition: Given a distribution D over a set X, the h
min-entropy of D, denoted H_(D), is
\ - min, log,( Pr[x<D] ) )

Examples:

* Ho({0,1}" ) = n

« H_( random n bit string with parity 0)
* H_( random i»>0 where Pr[i] = 2-)



Leftover Hash Lemma

‘Lemma: Let D be a distribution on X, and F a family A

of pairwise independent functions from Xto Y. Then
A( (F, £(D)) , (F, R) ) ¢ £ where

 f&F

« RECY

* log IY] ¢ H,(D) + 2 log ¢

- J




CPA-Secure PKE from LTDFs

Security:

* First switch to lossy mode

* Ctxt has form (c,=F(pk,r), ¢,=h(r)em)

* Since lossy, even given €,, r has min-entropy

* LHL: statistically close to (c,=F(pk,r), c;=kem)
* Now m completely hidden



All-But-One TDF

Gen(b<8B): outputs (pk,sk)
G(pk,b’,xEX) = yEY, deterministic
G'I(Sk,b',Y) = X

Correctness: V b’#b,
Pr[G-(sk,b’,G(pk,b’,x))=x:(pk,sk)<Gen(b) ] = 1

If pk€<Gen(b), then G(pk, b, - ) has “very small” range



All-But-One TDF

Branch b is hidden:

V b,b,,
pk: (pk,sk)<Gen(b,) =. pk: (pk,sk)<Gen(b,)



ABO from Lossy TDF

Suppose B = {0,1}"

Gen(b):

[0 20 Pl (200 ks [skiolska
PKy1 PK2,1 m Pk, m

(PKi i SKib) €Geniy()
Pki,l-bi < Gen|os()




ABO from Lossy TDF

Gen(b):

(20 L0 Pl (200 ks [skiolska
Pkl,l sz,l m Pk4,1 m

G(Pk, b', X): ( F(Pki,bi' ’ x) )i=l,...,n
GY(sk, b’, x): Use sk;,. where b; # b/




CCA-Secure PKE from ABO TDF

Ingredients:
* ABO TDF (Gen,go,G,G™)
» Strongly secure 1-time signature (Geng;q,Sign,Ver)

 Pairwise independent hash function family H



CCA-Secure PKE from ABO TDFs

Gen():
(pk,sk)€Gen,go(b) for random b
h<H
Enc((pk,h),m): Dec((sk,h), (vk,co.c;, 0)):
r<X Check Ver(vk, (c,,c,), o)
(Vk,sk’)€Geng; () x’'€G(sk,vk,c,)
Co€G(pk,vk,r) Check G(pk,vk,x")==c,
¢, <h(r)em

o< Sign(sk’, (c,.c;) ) Output h(x')ec,

Output (vk,c,,C,, ©)



[

-

Theorem: If (Genygo,G,G™!) is a secure ABO TDF,
(Gen,;,,Sign,Ver) is a strongly secure 1-time
signature scheme, and H is pairwise independent,
then (Gengye, Enc,Dec) is CCA-secure




Proof

Let m, ,ml be challenger query, (vk” Co ,cl “0") be ctxt
Note that any CCA query must have vk#vk*

Hybrid O: Encrypt mo*

Hybrid 1: Change pk to Gen(vk*)
e Can choose vk* at beginning
e Can still answer all CCA queries

Hybrid 2: Change Cz to h(x*)em,”
» Since lossy, h(x™) is statistically close to random

Hybrid 3: Change pK back to Gen(b)



Secret Sharing



Vault should only open if both Alice and Bob are present



Vault should only open if Alice, Bob, and Charlie are all present



Vault should only open if any two of
Alice, Bob, and Charlie are present



(Threshold) Secret Sharing

Syntax:
Share(k,t,n) outputs (shy,...,sh,)
Recon( (sh;),cs ) outputs k’

Correctness: VS s.t. |SI2t
If (sh;)i1 . n € Share(k,t,n), then
Pr[Recon( (Shi)ies ) = k] =1



(Threshold) Secret Sharing

Security:
For any S, |Sl«t, given (sh;),cs , should be
impossible to recover k

(shy)ics: (Shi)i=1,...,n €< Share(ko,t,n)

(shiicst (shii.y,..n € Share(k,,1,n)



n-out-of-n Secret Sharing

Share secret K so that only can only reconstruct K if
all n users get together

|deas?



Shamir Secret Sharing

Let p be a prime > n, 2#(Kk)

Share(k,t,n):

* Choose a random polynomial P of degree t-1
where P(0) = k

° Shi = p(i)

Recon( (sh;).cs ): use shares to interpolate P, then
evaluate on O



Shamir Secret Sharing

Correctness:
* + input/outputs (shares) are enough to interpolate
a degree t-1 polynomial

Security:
* Given just =1 inputs/outputs, P(0) is equally likely
to be any value



Beyond COS 433



Multiparty Computation

Everyone should learn
F(A,B,C), but nothing _ ‘s
else about others secrets ¢

Even if some
parties collude!!



One Approach

Sha-s s




One Approach

A

8
J

Shasa
Shg>a
Shcsa




Additivity of Shamir SS

Suppose we have:
* Share sh; = P(i) of secret k, and
* share sh’; = P’(i) of secret k’

sh.+sh’. is a secret share of kK+K":
* shi+sh’, = P(i) + P(i) = (P+P")(i)
* (p-l-p')(O) = P(O) + P'(O) = k+k’



One Approach

Shamir SS is additive, so users can add shares
together

Cannot directly multiply shares, but possible with a
little extra interaction

Therefore, can compute shares of arbitrary functions
of inputs

Finally, everyone exchanges shares to recover answer



Elliptic Curves

yv2zax3+bx2+cx+d




Group Law on ECs

2 .
p
P+Q )



ECs for Crypto

Consider EC over finite field
Set of solutions form a group
Dlog in group appears hard

* Given aP = (P+P+...+P), find a
* Can use in crypto applications



Bilinear Maps

On some Elliptic curves, additional useful structure

Map e:GxG—2>G,
* e(g? ,g°) = e(g.g)°®



3-party Key Exchange

Shared key = e(g,g)b*



Bilinear Maps

Extremely powerful tool, many applications beyond

those in COS 433
* 3 party non-interactive key exchange

* |dentity-based encryption
* Broadcast encryption



Multilinear Maps

I\/Iap e:Gner
o e(gd 'gb' .”) - e(g'g'.“)ab...

Many more applications that bilinear maps:
* n+1 party non-interactive key exchange
* Obfuscation

Unfortunately, don’t know how to construct from
elliptic curves
e Recently, constructions based on other math



Lattices



Lattices

Basis: e o o o o o

* Linearly independent _ _

* Every point in lattice is integer
combo of basis vectors




Lattices

Hard problems in lattices:
e Given a basis, find the shortest vector in the lattice

e Given a basis an a point not in the lattice, find the
closest lattice point

Can base much crypto on approximation versions of

these problems
* Basically everything we’ve seen in COS433, then some



Fully Homomorphic Encryption

In homework, you saw additively/multiplicatively
homomorphic encryption:
Enc(pk, x) + Enc(pk, y) = Enc(pk, x+y)
OR
Enc(pk, x) x Enc(pk, y) = Enc(pk, xxy)

What if you could do both simultaneously?
* Arbitrary computations on encrypted data



Delegation

N ji | g amazon
/ web services

Doesn’t want Amazon to learn sensitive data



Delegation

N, m ~
23 @
3 b

i * - amazon
/ web services

>

Now, Alice wants Amazon to run
expensive computation on data



Delegation

'0

g
arpazon

SEervices

'0

> N8
~
us

< Homomorphic evaluation




Quantum Computing

Computers that take advantage of quantum physics

Turns out, good at solving certain problems
» Dlog in any group (Z,’, ECs)
* Factor integers

Also can speed up brute force search:
* Invert OWF in time 2"/2
* Find collisions in time 2"/3




Quantum Computing

To protect against quantum attacks, must:

* Must increase key size
e 256 bits for one-way funcitons
» 384 bits for collision resistance

* Must not use DDH/Factoring
* Lattices instead

Quantum computers still at least a few years away,
but coming



COS 533

Covers handful of topics in these areas

Class time: MW 11am-12:20pm



