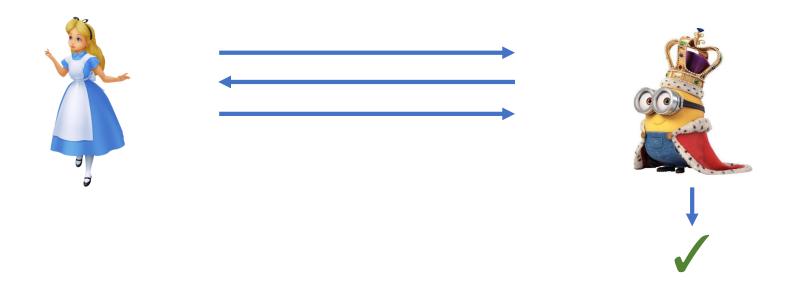
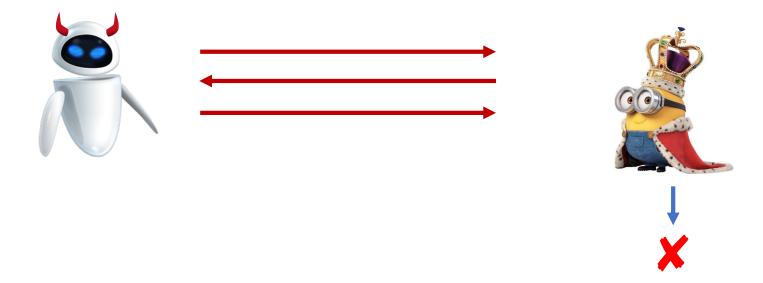
COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Identification



Identification



Identification

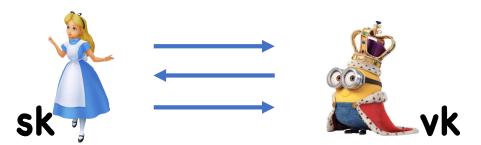
To identify yourself, you need something the adversary doesn't have

Typical factors:

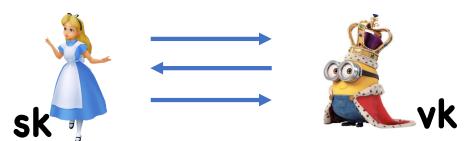
- What you are: biometrics (fingerprints, iris scans,...)
- What you have: Smart cards, SIM cards, etc
- What you know: Passwords, PINs, secret keys

Types of Identification Protocols

Secret key:

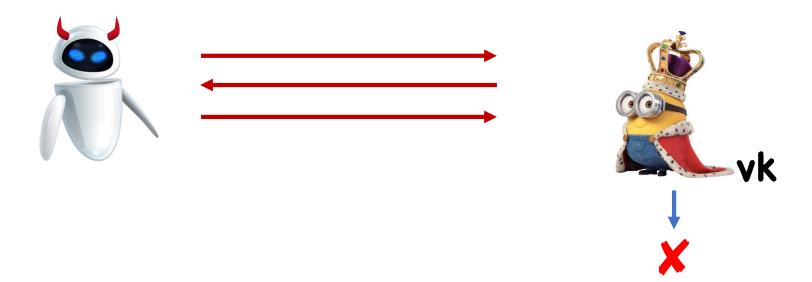


Public Key:

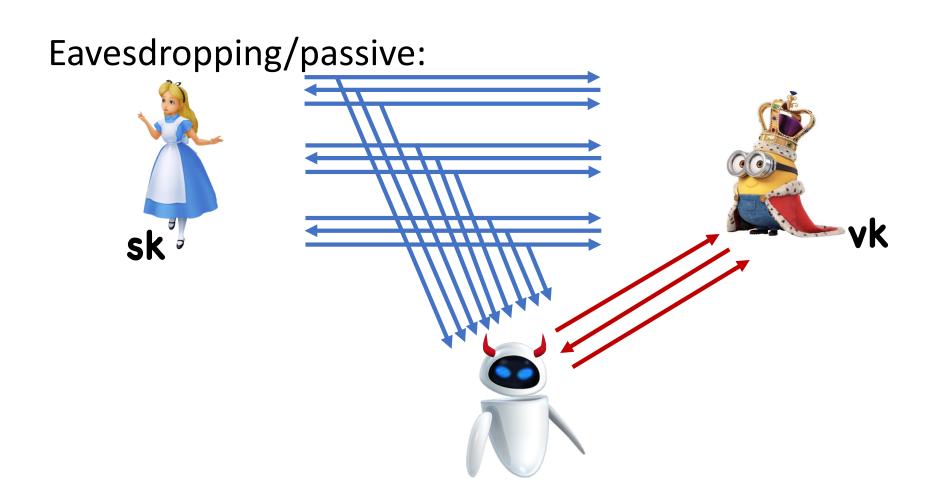


Types of Attacks

Direct Attack:



Types of Attacks



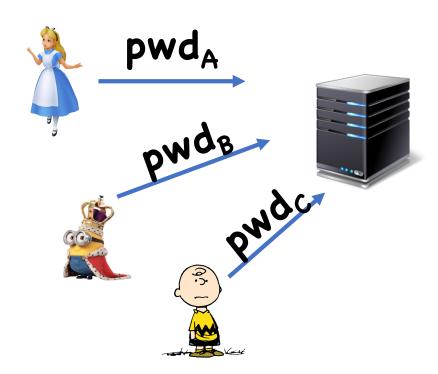
Types of Attacks

Man-in-the-Middle/Active:



Salting

Let **H** be a hash function



s_i random

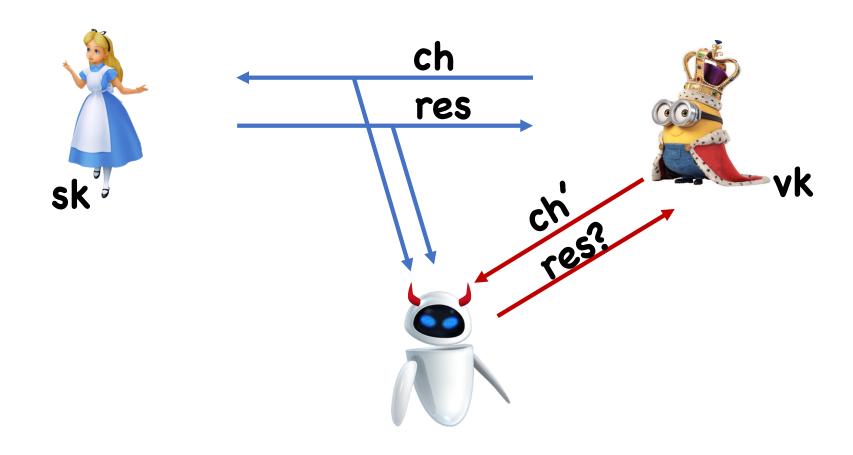
User	Salt	Pwd
Alice	SA	H(s _A ,pwd _A)
Bob	SB	$H(s_B,pwd_B)$
Charlie	S _C	$H(s_c,pwd_c)$
•••	•••	•••

What Hash Function to Use

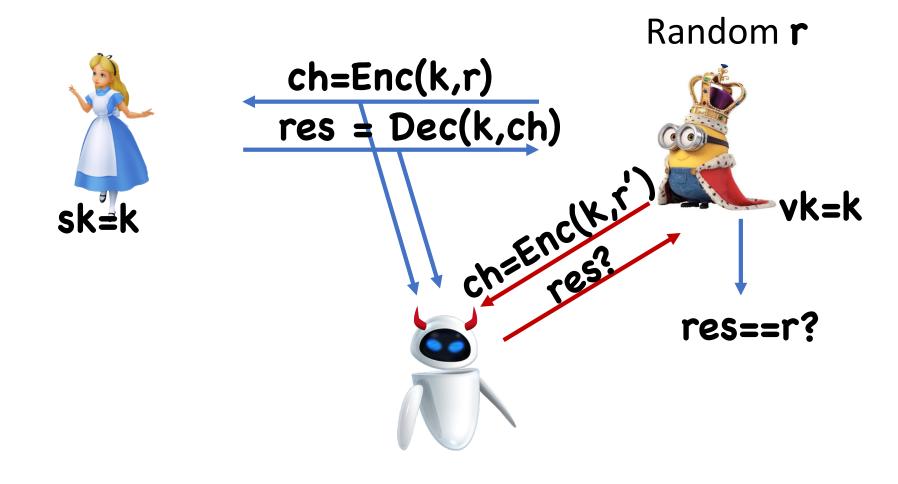
Memory-hard functions: functions that require a lot of memory to compute

- As far as we know, no special purpose memory
- Attacker doesn't gain advantage using special purpose hardware

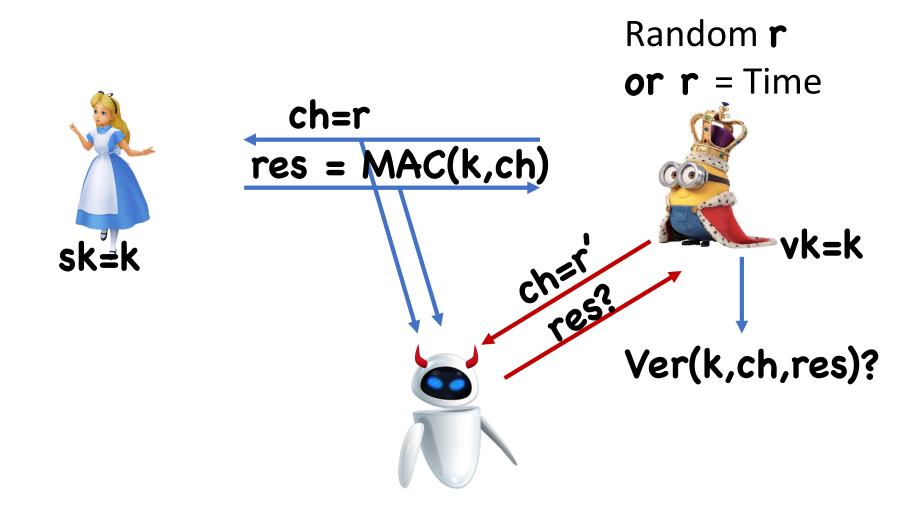
Challenge-Response



C-R Using Encryption



C-R Using MACs/Signatures



Active Attacks

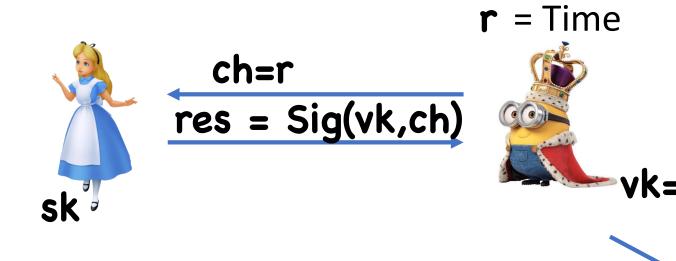
For enc-based C-R, CPA-secure is insufficient

Instead need CCA-security (lunch-time sufficient)

For MAC/Sig-based C-R, CMA-security is sufficient

Non-Repudiation

Consider signature-based C-R



 (r,σ)

Bob can prove to police that Alice passed identification

What if Bob could have come up with a valid transcript, without ever interacting with Alice?

Then Bob cannot prove to police that Alice authenticated

Seems impossible:

• If (public) **vk** is sufficient to come up with valid transcript, why can't an adversary do the same?

Adversary CAN come up with valid transcripts, but Bob doesn't accept transcripts

• Instead, accepts interactions

Ex: public key Enc-based C-R

- Valid transcript: (c,r) where c encrypts r
- Anyone can come up with a valid transcript
- However, only Alice can generate the transcript for a given c chosen by Bob

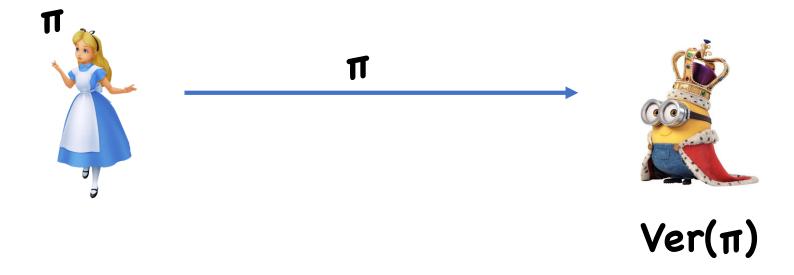
Takeaway: order matters

Today

Zero knowledge proofs

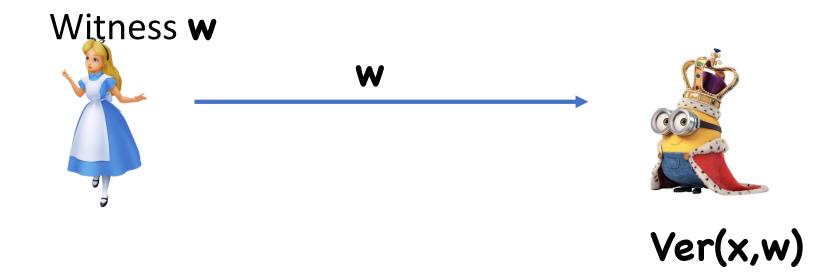
Prove a theorem without revealing how to prove it

Mathematical Proof



Mathematical Proof

Statement x



Interactive Proof

Statement x

Properties of Interactive Proofs

Let **(P,V)** be a pair of probabilistic interactive algorithms for the proof system

Completeness: If w is a valid witness for x, then V should always accept

Soundness: If **x** is false, then no cheating prover can cause **V** to accept

- Perfect: accept with probability O
- Statistical: accept with negligible probability
- Computational: cheating prover is comp. bounded

Intuition: prover doesn't learn anything by engaging in the protocol (other than the truthfulness of **x**)

How to characterize what adversary "knows"?

- Only outputs a bit
- May "know" witness, but hidden inside the programs state

First Attempt:

valid witness w,

 \exists "simulator" \mathbf{x} , s.t. for every true statement \mathbf{x} ,

$$\approx_{\mathbf{c}} P(\mathbf{x}, \mathbf{w}) \stackrel{>}{=} V(\mathbf{x})$$

First Attempt:

Assumes Bob obeys protocol

"Honest Verifier"

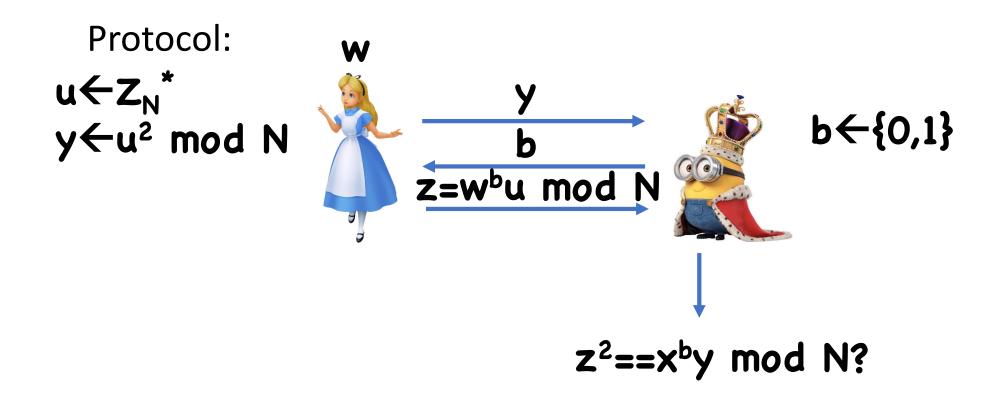
But what if Bob deviates from specified prover algorithm to try and learn more about the witness?

For every malicious verifier V^* , \exists "simulator" \mathbf{x} , s.t. for every true statement \mathbf{x} , valid witness \mathbf{w} ,

$$\approx_{c} P(x,w) \stackrel{\longrightarrow}{\longrightarrow} V^{*}(x)$$

Statements: x is a Q.R. mod N

Witness: $w \text{ s.t. } w^2 \text{ mod } N = x$



Completeness:

$$z^2 = (w^b u)^2 = (w^2)^b u^2 = x^b y$$

Soundness:

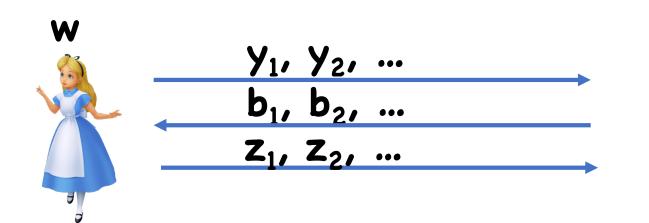
- Suppose x is not a QR
- Consider malicious prover P*
- No matter what y is, either
 - y is not a QR, or
 - xy is not a QR
- With prob. 1/2, P* will have to find a non-existent root

Boosting Soundness? y_1 W b_1 Repetition: y_2 b_2 z_2

Theorem: If (P,V) has soundness error ½, then repeating † times gives soundness error 2-†

Boosting Soundness?

Parallel Repetition:



Theorem: If (P,V) has soundness error ½, then repeating † times in parallel gives soundness error 2-†

Zero Knowledge:

What does Bob see?

- A random QR y,
- A random bit **b**,
- A random root of x^by

Idea: simulator knows **b** when generating **y**,

Can choose y s.t. it always knows a square root of x^by

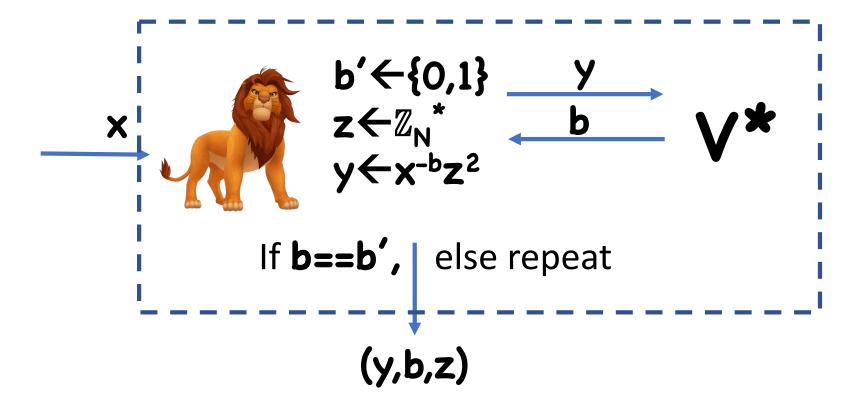
Honest Verifier Zero Knowledge:

- Choose a random bit b
- Choose a random string Z
- Let $y = x^{-b}z^2$
- Output (y,b,z)

- If x is a QR, then y is a random
 QR, no matter what b is
- z is a square root of x^by

(y,b,z) is distributed identically to (P,V)(x)

(Malicious Verifier) Zero Knowledge:



(Malicious Verifier) Zero Knowledge:

Proof:

- If x is a QR, then y is a random QR, independent of
- Conditioned on b'=b, then (y,b,z) is identical to random transcript seen by V*
- b'=b with probability 1/2

Repetition and Zero Knowledge

(sequential) repetition also preserves ZK

Unfortunately, parallel repetition might not:

- m makes guesses $b_1', b_2', ...$
- Generates valid transcript only if all guesses were correct
- Probability of correct guess: 2^{-†}

Maybe other simulators will work?

 Known to be impossible in general, but nothing known for QR

Proofs of Knowledge

Sometimes, not enough to prove that statement is true, also want to prove "knowledge" of witness

Ex:

- Identification protocols: prove knowledge of key
- Discrete log: always exists, but want to prove knowledge of exponent.

Proofs of Knowledge

We won't formally define, but here's the intuition:

Given any (potentially malicious) PPT prover P^* that causes V to accept, it is possible to "extract" from P^* a witness W

Deniability

Zero Knowledge proofs provide deniability:

- Alice proves statement x is true to Bob
- Bob goes to Charlie, and tries to prove x by providing transcript
- Charlie not convinced, as Bob could have generated transcript himself
- Alice can later deny that she knows proof of x

Schnorr PoK for DLog

Statement: (g,h)

Witness: w s.t. h=gw

Protocol:

Schnorr PoK for DLog

Completeness:

•
$$g^c = g^{r+wb} = a \times h^b$$

Honest Verifier ZK:

- Transcript = (a,b,c) where $a=g^c/h^b$ and (b,c) random in \mathbb{Z}_p
- Can easily simulate. How?

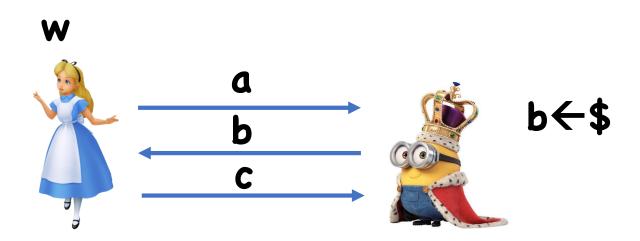
Schnorr PoK for DLog

Proof of Knowledge?

Idea: once Alice commits to $\mathbf{a}=\mathbf{g}^{\mathbf{r}}$, show must be able to compute $\mathbf{c} = \mathbf{r}+\mathbf{b}\mathbf{w}$ for any \mathbf{b} of Bob's choosing

- Intuition: only way to do this is to know w
- Idea: $c_0 = r_0 + b_0 w$, $c_1 = r_1 + b_1 w$
 - Can solve linear equations to find w

∑ Protocols



Identification from ∑ Protocols

pk = some hard statement (e.g. (g,h))
sk = witness (e.g. Dlog)

To identify, just engage is ZKPoK that you know witness

- Zero knowledge means prover learns nothing from interaction
- PoK means you'll only be let in if you indeed know witness

If ZKPoK is only ZK for honest verifiers, more work needed to get active security

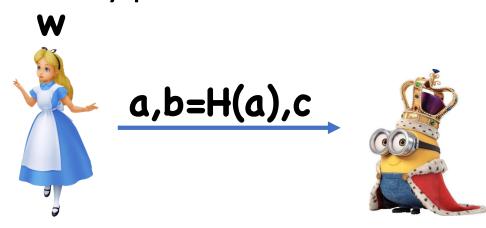
Fiat-Shamir Transform

Idea: set b = H(a)

• Since **H** is a random oracle, **a** is a random output

Notice: now prover can compute **b** for themselves!

No need to actually perform interaction



Theorem: If **(P,V)** was a secure ZKPoK for honest verifiers, then the random oracle protocol is a ZKPoK in the random oracle model

Proof idea: second message is exactly what you'd expect in original protocol

Complication: adversary can query **H** to learn second message, and throw it out if she doesn't like it

Non-Interactive Zero Knowledge

Claim: NIZK is impossible (Why?)

Why doesn't this contradict statement on previous slide?

Other variation: NIZK with common reference string

Observation: NIZKs loose deniability

Signatures from ∑ Protocols

Idea: what if set b = H(m,a)

- Challenge **b** is message specific
- Intuition: proves that someone who knows sk engaged in protocol depending on m
- Can use resulting transcript as signature on m

Schnorr Signatures

```
sk = w
pk = h:=g<sup>w</sup>
```

Sign(sk,m):

- r←ℤ_p
- · a \(\)g^r
- b←H(m,a)
- · c←r+wb
- Output **(a,c)**

```
Ver(h,m,(a,c)):
b←H(m,a)
a×h<sup>b</sup> == g<sup>c</sup>?
```

Zero Knowledge Proofs

Known:

- Proofs for any NP statement assuming just one-way functions
- Non-interactive ZK proofs for any NP statement using trapdoor permutations

Applications

Identification protocols Signatures

Protocol Design:

- E.g. CCA secure PKE
 - To avoid mauling attacks, provide ZK proof that ciphertext is well formed
 - Problem: ZK proof might be malleable
 - With a bit more work, can be made CCA secure
- Example: multiparty computation
 - Prove that everyone behaved correctly

Next Time

Wrap up:

- CCA security w/o random oracles
- Secret sharing
- Beyond COS 433