COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

ldentification

ldentification

ldentification

To identify yourself, you need something the
adversary doesn’t have

Typical factors:

* What you are: biometrics (fingerprints, iris scans,...)
* What you have: Smart cards, SIM cards, etc

*What you know: Passwords, PINs, secret keys

Today

Types of ldentification Protocols

Secret key:

/a >3

R > @) . J

R - " @
sk S \

Public Key:

A U ‘% RN
sk T B vk vk

Types of Attacks

Direct Attack:

Types of Attacks

Eavesdropping/passive:

Types of Attacks

Eavesdropping/passive:

2
3
(

sk °

Types of Attacks

Man-in-the-Middle/Active:

A
\ 4
| -

/

Types of Attacks

Man-in-the-Middle/Active:

>
>

<

a3 ;
/3 :

sk °

'r
L

=t /

Basic Password Protocol

Never ever (ever ever...) use

:i sk R

Problem with Basic Pwd Protocol

vk must be kept secret at all costs

Issue:

User __[Pwd___
Alice pwd,
Bob pwdg

Charlie pwd,

Problem with Basic Pwd Protocol

vk must be kept secret at all costs
= MOTHERBOARD =z -
;-\Ew;lother Day, Another Hack: 117

<.
A PW Million Linkedin Emails And
Passwords pp»

Issue:

SSSSSSSSS

A B YAOO BREACH HITS HALF A BILLION

HACK BRIEF: YOUR OLD MYSPACE ACCOUNT JUST
CAME BACK T0 HIAUNT YOU

JACK BRIEE: (YEAROLD DROPROS IACK EXPOSED 68— 0coraie i oy ACHA BLLIO YO0

MILLION PEOPLE'S DATA
theguardlan

home) tech US politics world opin sports er arts lifestyle fas =all

Tumblr

More than 65m Tumblr emails for sale on the
darknet

, AR

_ /
=
o Courts

Advocate
Medical -
Group
-

Slightly Better Version

STILL never ever (ever ever...) use

Let H be a hash function

sk=pwd “Vk:l-l(pwd)

H(sk) == vk?

Slightly Better Version

STILL never ever (ever ever...) use

Let H be a hash function

' :\ pwds [EECTE
Alice H(pwd,)
a WN 6 Bob H(PWdB)

Charlie H(pwd,)

Slightly Better Version

STILL never ever (ever ever...) use

Advantage of hashing:

* Now if pwd database is leaks, adversary only gets
hashes passwords

* For identification protocol, need actual password

* Therefore, adversary needs to invert hash function
to break protocol

* Presumed hard

Weak Passwords

17% —

Data from 10M passwords leaked in 2016:

654321
1. 123456 10. 987654321 19. 555555
123456789 T gwertyuiop 20. 3rjis1la7ge
3. qwerty 123 mynoob 2 google
4. 12345678 18. 123321 22. 1g2w3e4rbt
5. 111111 14. 666666 23. 123qwe
6. 1234567890 15. 18atcskd2w 24. zxcvbnm
{: 1234567 16. VUL T 25. 1g2w3e
8. password 17. 192w3e4r
\ T)

50% of available passwords

https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/

Weak Passwords

Of course, pwds that have been leaked are likely the
particularly common ones

Even so, 360M pwds covers about 25% of all users

Online Dictionary Attack

Suppose attacker gets list of usernames

Attacker tries logging in to each with pwd = 123456’

5-17% of accounts will be compromised

Online Dictionary Attacks

How to slow down attacker?

* Lock out after several unsuccessful attempts
* Honest users may get locked out too

* Slow down response after each unsuccessful

attempt
e 1s after 1%t, 2s after 2"d 4s after 379 etc

Offline Dictionary Attack

Suppose attacker gets hashed password vk = H(pwd)

Attack:

* Assemble dictionary of 360M common passwords
* Hash each, and check if you get vk

* If so, you have just found pwd!

On modern hardware, takes a few seconds to recover a
a passwords 25% of the time

Offline Dictionary Attack

Now consider what happens when adversary gets
entire hashed password database

* Hash dictionary once: O(|Dl)

* Index dictionary by hashes

* Lookup each database entry in dictionary: O(|L])

To get 25% of passwords takes O(IDI+IL|) time
 Amortize cost of hashing dictionary over many
passwords

Salting

Let H be a hash function
s; random

Alice SA H(sAlPWdA)

Bob sg H(sgpwdg)
Charlie Sc H(SC,PWdc)

Salting

Salt length? Enough to make each user’s salt unique
* At least 64 bits

Salting kills amortization:
* To recover Alice’s key, adversary must hash entire
dictionary with s,
* To recover Bob’s key, adversary must hash entire
dictionary with Sg
* Must hash entire dictionary again for each user
Running time: O(IDIxILI)

Unique Passwords

Different websites may employ different standards

for password security
 Some may store passwords in clear, some may hash

without salt, some may salt

If you use the same password at a bank (high
security) and your high school reunion (low security),
could end up with your password stolen

Unique Passwords

Solutions:
* Password managers

 Salt master password to generate website-specific
password (e.g. pwdhash):

Master password: pwd
Pwd for abcdefg.com: H(abcdefg.com,pwd)

What Hash Function to Use

In LindedIn leak (using Shal), 90% of passwords were
recovered within a week

Problem: Shal is very fast!

To make hashing harder, want hash function that is
just slow enough to be unnoticeable to user

What Hash Function to Use

Examples: PBKDF2, bcrypt
* [terate hash function many times:
H'(x) = H(H(H(....H(x)....)))

 Set #iterations to get desired hashing time

Still problem:
e Adversary may have special purpose hardware
= Can eval much fast than you can (50,000x)

What Hash Function to Use

Memory-hard functions: functions that require a lot
of memory to compute

* As far as we know, no special purpose memory

e Attacker doesn’t gain advantage using special
purpose hardware

What Hash Function to Use

Example: Scrypt

* Slow hash function, and memory requirement is as
good as possible (proportional to run time)

* Problem: memory access pattern depends on

password
* Local attack can potentially learn access pattern
* Turns out this can eliminate the need for memory in
attacks

What Hash Function to Use

Instead, want data-independent memory hard
function (iMHF)
* Ex: Argon2i

To date, no known practical iIMHF with optimal
memory requirements

Encrypt Passwords?

Alice Enc(k,pwd,)
Bob Enc(k,pwd;)
Charlie Enc(k,pwd,)

Encrypt Passwords?

Again, never ever (ever ever....) use
* To check password, need to decrypt

* Must store decryption key K somewhere
* What if K is stolen?

Need to use one-way mechanism

 With hash function, not even server can recover
password

Security Against Eavesdropping

LY. sk .
sk=pwd /y/ “Vk:l—l(s,,,,pwd)
H(sA,sk) == vKk?

Security Against Eavesdropping

One solution: update sk,vk after every run

One-time Passwords

Let F be a PRF

}% | sky = F(k,0) R “%
sk=(k,0) “Vk:(k,O)

sk, == F(k,0)?

One-time Passwords

Let F be a PRF

:“%?4 | Skl = F(k,l) ~%
Skﬁ(k,l) n‘!k:(k,l)

sk, == F(k,1)?

One-time Passwords

Let F be a PRF
Ny B sk, = F(k,0) L)

o
WS

[

it
oy

B\

sk=Kk,0 vk=K,0

r»
S

/

One-time Passwords

Let F be a PRF

)/‘:* SKO - F(k,O) N

[

sk=Kk,1 QQ.Q.
&>
_J
<

One-time Passwords

Advancing state:

* Time based (e.g. every minute, day, etc)
e User Action (button press)

Must allow for small variation in counter value

* Clocks may be off, user may accidentally press
button

g i ’.SE.)

S/Key

Allow for vK to be public

sk = random string kK
vk = H(K) := lI-I(I-I(I-I(I-I(x)))')

|
n times

sk, = H"'"-1(k)
vk. = H™(K)

S/Key

N

S
[

.;ij\ Skl - Hn-Z(k) fz%
§ e g
= AL

sk=k ';Iil‘(l:skoan-l(k)

S/Key

Now VK can be public

However, after n runs, need to reset

Stateless Schemes?

So far, all schemes secure against eavesdropping are
stateless

Easy theorem: any one-message ID protocol is
insecure if the adversary can eavesdrop

e Simply replay message

If want stateless scheme, instead want at least two
messages

Challenge-Response

C-R Using Encryption

M Randomr
| :J\) ch=Enc(k,r) 5
LS res 3 Dec(k,ch)

sk=k

(\C
\\ c‘(y{/
J

&

‘Theorem: If (Enc,Dec) is a CPA-secure secure
SKE/PKE scheme, then the C-R protocol is a secret
key/public key identification protocol secure against

__eavesdropping attacks

l 1(ci,ri)s]
@

C-R Using MACs/Signatures

Randomr
3 he orr =Time
, ch=r *
ZS res = MAC(k Ch) (@u
."vk K

sk=k \\
%(k ch,res)?

/Theorem: If (MAC,Ver) is a CMA-secure secure
MAC/Signature scheme, then the C-R protocol is a
secret key/public key identification protocol secure

__against eavesdropping attacks

Active Attacks

J <
\o!
[

sk - >

A
viv

viv

Active Attacks

For enc-based C-R, CPA-secure is insufficient
* Instead need CCA-security (lunch-time sufficient)

For MAC/Sig-based C-R, CMA-security is sufficient

Non-Repudiation

Consider signature-based C-R

’3\ _ ch=r
/) res = Sig(vk, ch)
sk -

Bob can prove to police that
Alice passed identification

/ero Knowledge

What if Bob could have come up with a valid

transcript, without ever interacting with Alice?

* Then Bob cannot prove to police that Alice
authenticated

Seems impossible:
* If (public) vK is sufficient to come up with valid
transcript, why can’t an adversary do the same?

/ero Knowledge

Adversary CAN come up with valid transcripts, but
Bob doesn’t accept transcripts
* Instead, accepts interactions

Ex: public key Enc-based C-R

e Valid transcript: (c,r) where ¢ encrypts r

* Anyone can come up with a valid transcript

* However, only Alice can generate the transcript for
a given €

Takeaway: order matters

Next Time

Zero knowledge proofs
* Prove a theorem without revealing how to prove it

