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Previously...

Encryption
+

Authentication

Authenticated Encryption

Collision Resistance



Security Notions for Hashing

Collision resistance as a game:

1 iff Xo#X,
H(k,Xo) - H(k,xl)



Security Notions for Hashing

2nd Preimage Resistance (or target collision
resistance):

1 iff Xo#X,
H(k,Xo) - H(k,xl)



Security Notions for Hashing

2-Universal:

1 iff Xo#X,
H(k,Xo) - H(k,xl)



Security Notions for Hashing

One-wayness (or pre-image resistance):




Implications

Collision Resistance

v

2"d Pre-image Resistance

v

One-wayness



Random QOracle Model

Pretend H is a truly random function
Everyone can query H on inputs of their choice
* Any protocol using H

* The adversary (since he knows the key)

A query to H has a time cost of 1



Today

Commitment Schemes

Start: number-theoretic constructions of symmetric
key primitives



Remember Galileo

* Galileo observed the rings of Saturn, but mistook

them for two moons @

e Galileo wanted extra time for verification, but not
to get scooped

e Circulates anagram
SMAISMRMILMEPOETALEUMIBUNENUGTTAUIRAS

* When ready, tell everyone the solution:
altissimum planetam tergeminum observavi

( “l have observed the highest planet tri-form” )



Commitment Scheme

Different than encryption

* No need for a decryption procedure
* No secret key
 But still need secrecy (“hiding”)

* Should only be one possible opening (“binding”)

 Sometimes other properties needed as wel



(Non-interactive)
Commitment Syntax

Message space M
Ciphertext Space C
(suppressing security parameter)

Com(m; r): outputs a commitment ¢ to m



Commitments with Setup

Message space M
Ciphertext Space C
(suppressing security parameter)

Setup(): Outputs a key k
Com(k, m; r): outputs a commitment ¢ tom



Using Commitments

r<R
c<Com(m;r)

.M
m,r

Reveal Stage Commit Stage

> Check that
¢ = Com(m;r)



Using Commitments (with setup)

k<€ Setup()
)
o / \
N
£ ré€R c<Com(k,m;r)
. i
(%0 Tm K"
Z m,r
© —Check that
2 ¢ = Com(k,m;r)
oc



Security Properties

Hiding: ¢ should hide m
* Perfect hiding: for any m,, m;,

Com(m,) d Com(m,)

* Statistical hiding: for any mg, m;
A( Com(m,), Com(m,) ) < negl

* Computational hiding:

r";‘[“x m m
"y or 71 ‘
o - » <) ¢ € Com(m,)

bl



Security Properties (with Setup)

Hiding: ¢ should hide m
* Perfect hiding: for any m,, m;,

k,Com(k,m,) £ k,Com(k,m,)

* Statistical hiding: for any mg, m;
a( [k,.Com(k,m,)], [k,Com(K,m,)] ) < negl

* Computational hiding:

W < ,
m Mg, M —) ¢ € Com(k,m,)

; <
bl




Security Properties

Binding: Impossible to change committed value

* Perfect binding: For any ¢, 3 at most a single m
such that ¢ = Com(m;r) for some r

 Computational binding: no PPT adversary can find
(mo,1r5).(my,r,) such that Com(m,;ry)=Com(m,;r,)



Security Properties (with Setup)

Binding: Impossible to change committed value
* Perfect binding: For any K,c, 3 at most a single m such
that ¢ = Com(k,m;r) for some r

e Statistical binding: except with negligible prob over K,
for any ¢, d at most a single m such that ¢ =
Com(k,m;r) for somer

* Computational binding: no PPT adversary, given
k&Setup(), can find (mg,r,),(m,,r,) such that
Com(k,mo;ro)=com(klm1;rl)



Who Runs Setup()

Trusted third party (TTP)?

Alice?

* Must ensure that Alice cannot devise K for which
she can break binding

* If binding holds, can actually devise scheme Com’
without setup

Bob?
* Must ensure Bob cannot devise K for which he can
break hiding



Honest-but Curious vs Malicious

Honest-but Curious receiver: runs Setup as
expected, tries to learn committed message

Malicious receiver: can generate K however he
wants, tries to learn message



Anagrams as Commitment
Schemes

Com(m) = sort characters of message

Problems?
* Not hiding: “Jupiter has four moons” vs “Jupiter has
five moons”

* Not binding: Kepler recodes Galileo’s anagram to
conclude Mars has two moons



Anagrams as Commitment
Schemes

Com(m) = add random superfluous text, then sort
characters of message

Might still not be hiding

* Need to guarantee, for example that expected
number of each letter in output is independent of
Input string

Still not binding...



Other Bad Commitments

Com(m) = m
* Has binding, but no hiding

Com(m;r) = mer
* Has hiding, but no binding



Can a commitment scheme be both
statistically hiding and statistically binding?



A Simple Commitment Scheme

Let H be a hash function

Com(m;r) = H(m |l r)

Binding?

Hiding?



/Theorem: Com(m;r) = H(mlIr) has: N

* Perfect binding assuming H is injective

 Computational binding assuming H is collision
resistance (implied by RO)

 Computational hiding in the Random Oracle

K Model /




H<Funcs




Proof of Hiding

B ¢ :
Suppose g never queries Hon m,||r

Then all query answers and commitment c seen by

& are independent uniform strings
. i‘i has no chance of determining b

Probability ;i gueries on mbllr?
» At most q/|R| = negligible



“Standard Model” Commitments?

Random oracle model proof is heuristic argument for
security

Can we prove it under assumptions such as collision
resistance, etc?



Single Bit to Many Bit

Let (Setup,Com) be a commitment scheme for
single bit messages

Let Com’(k,m; r)=(Com(k,m,;r,),...,Com(k,m,;r,))
‘m = (ml,...,mf), m,e{Otl}
*r = (ry,..,r;y), r; are randomness for Com



‘Theorem: If (Setup,Com) is h

perfectly/statistically/computationally binding, then

so is (Setup,Com’)
N y

‘Theorem: If (Setup,Com) is :

perfectly/statistically/computationally, semi-

honest/malicious hiding, then so is (Setup,Com’)
N Y,




Binding

Suppose \ breaks (say comp) biding of Com’
Given K, produces (m,°,r,°),..., (m,%r,°),
(m,t,rt),.., (m,r!) such that
*(m/0,...m° # (m},.. m,)

« Com(k,m?;r°) = Com(k,m!;r;!) foralli

Therefore, 3i such that m® £ m! but
Com(k,m;%;r,%) = Com(k,m;!;r!)

= Break binding of Com



Hiding

@ . . .
Suppose i breaks (say, computational malicious)

hiding

r<R
c;<Com(k,m?; r.)




Hiding

Proof by Hybrids

Hybrid j:

* For each igj, ¢; = Com(k,m,r;)

* For each i>}, ¢; = Com(k,m?°,r;)

Hybrid O: commit to {m,%}.
Hybrid t: commit to {mil}i

3 j such that ;ﬁdistinguishes Hyb j-1 from Hyb j
= break hiding of Com



Single Bit to Many Bit

Let (Setup,Com) be a commitment scheme for
single bit messages

Let Com’(k,m; r)=(Com(k,m,;r,),...,Com(k,m,;r,))
‘m = (ml,...,mf), m,e{Otl}
*r = (ry,..,r;y), r; are randomness for Com

Therefore, suffices to focus on commitments for
single bit messages



Statistically Hiding Commitments

Let B be a collision resistant hash function with
domain X={0,1}xR and range Z

Setup(): K€K, output K
Com( k, m; r) = H(k, (m,r))

Binding?

Hiding?



Statistically Hiding Commitments

Let F be a pairwise independent function family with
domain X={0,1}xR and range Y

Let H be a collision resistant hash function with
domain Y and range Z

Setup(): fF&F, k<K, output (f,k)
Com( (F,k), m, r) = H(kl F(mlr))



‘Theorem: If [YI/IXI is “sufficiently large” and H is
collision resistant, then (Setup,Com) has
_computational binding

~

Theorem: If | X| is “sufficiently large”, then
(Setup,Com) has statistical hiding




‘Theorem: If |YI/IX| is “sufficiently large” and His

collision resistant, then (Setup,Com) has
_computational binding y

Proof:
* Suppose |Y| > |X|2 x 2*
* For any Xq#x,, Prlf(x,)=Ff(x,)] < 1/(|X|? x 2*)
* Union bound:
Pri3 x,#x, s.t. f(x,)=F(x,)] < 1/2*



Theorem: If | X| is “sufficiently large”, then
(Setup,Com) has statistical hiding

Goal: show (f, k, H(k, f(O,r)) ) is statistically close
to (F, Kk, H(k, f(1,r)) )



Min-entropy

/Definition: Given a distribution D over a set X, the h
min-entropy of D, denoted H_(D), is
\ - min, log,( Pr[x<D] ) )

Examples:

* Ho({0,1}" ) = n

* H_(random n bit string with parity O)
* H_( random i»>0 where Pr[i] = 2-)



Leftover Hash Lemma

‘Lemma: Let D be a distribution on X, and F a family A

of pairwise independent functions from Xto Y. Then
A( (F, £(D)) , (F, R) ) ¢ £ where

 f&F

« RECY

* log IY] ¢ H,(D) + 2 log ¢

- J




“Crooked” Leftover Hash Lemma

Lemma: Let D be a distribution on X, and F a family A

of pairwise independent functions from Xto Y, and
h be any function fromY to Z. Then

A( (F, h(f(D))) , (F, h(R)) ) ¢ € where

. f&F

c RECY

* log |Z] < H,(D) + 2 log € - 1
N y,




Theorem: If | X| is “sufficiently large”, then
(Setup,Com) has statistical hiding

Goal: show (f, k, H(k, f(O,r)) ) is statistically close
to (F, kK, H(k, f(1,r)) )

Suppose |zZ| = 2*
(0,r) has min-entropy log IRI
SetR = §{0,1}3* € = 2x2-A

Then log 1Z| < H,(D) + 2 log € - 1



Theorem: If | X| is “sufficiently large”, then
(Setup,Com) has statistical hiding

For any K,
A( (F, H(k, f(O,r)) , (F, H(k, U)) ) < ¢

Thus
A( (F, H(k, f(O,r))) , (f, H(k, f(1,1)) ) ¢ 2¢

Therefore

A( (F, k, H(k, f(O,r)) ), (F, k, H(k, f(1,r)) ) < 2¢



Statistically Binding Commitments

Let G be a PRG with domain §0,1}, range §0,1}3*
Setup(): choose and output a random 3A-bit string K

Com(b; r): If b=0, output G(r), if b=1, output G(r)ek



[Theorem: (Setup,Com) is statistically binding ]

Theorem: If G is a secure PRG, then (Setup,Com)
has computational hiding




Theorem: If G is a secure PRG, then (Sefup,Com)
has computational hiding

Hybrids:

* Hyb 0: S = Com(0;r) = G(r) where r<&40,1}*

* Hyb 1: S€{0,1}3*

* Hyb 2: S = S’ek, where S’ €{0,1}3*

* Hyb 3: S = Com(1;r) = G(r)ek where r&{0,1}*




{Theorem: (Sefup,Com) is statistically binding

Proof:
For any r,r’, Pr[G(r) = G(r')ek] = 2-3*

By union bound:
Pr[3rr’ such that Com(k,0)=Com(k,1)]
= Pr[3rr’ suchthat G(r) = G(r')ek] < 2-



Number-theoretic
Constructions



So Far...

Two ways to construct cryptographic schemes:

* Use others as building blocks
* PRGs = Stream ciphers
* PRFs > PRPs
* PRFs/PRPs > CPA-secure Encryption

* From scratch
* RC4, DES, AES, etc

In either case, ultimately scheme or some building
block built from scratch



Cryptographic Assumptions

Security of schemes built from scratch relies solely
on our inability to break them

* No security proof

* Perhaps arguments for security

We gain confidence in security over time if we see
that nobody can break scheme



Number-theory Constructions

Goal: base security on hard problems of interest to
mathematicians

* Wider set of people trying to solve problem

* Longer history



Integer Factorization

Given an integer N, factor N into its prime factors

Studied for centuries, presumed computationally
difficult
* Grade school algorithm: O(N/2)
* Much better algorithms:
exp( C (log n)'/3 (log log n)2/3)

* However, all require super-polynomial time



/Factoring Assumption: Let p, q be two random A-
bit primes, and N = pq. Then any PPT algorithm,
given N, has at best a negligible probability of

Krecovering pandq




One-way Functions From
Factoring

P, = {A-bit primes}

F: P,2 > {0,1}3
F(p.q) = pxq

Trivial Theorem: If factoring assumption holds, then
F is one-way




Sampling Random Primes

Prime Number Theorem: A random A-bit number is
prime with probability =1/A

Primality Testing: It is possible in polynomial time to
decide if an integer is prime

Fermat Primality Test (randomized, some false positives):
e Choose arandom integer a<{0,...,N-1}

« TestifaN = a mod N

* Repeat many times



Discrete Log

Let p be a large integer (maybe prime)

Given gEZP*, aE7Z, easy to compute g* mod p

However, no known efficient ways to recover a from

gand g® mod p



/Discrete Log Assumption: Let p be a A-bit integer. N

Then the function (g,a) 2> (g,g° mod p) is one-
way, where

° gEZ
S log)

= /




Generalizing Discrete Log

Let G, be multiplicative groups of size n,

/Definition: The discrete log assumption holds on
{G,} if the function F:G,;x40,...,n,-1}>G,? is one-
way, where

- F(g.a) = (g9.9%)

Examples

*G =17, " for a prlmep, n = p-l1

* G = subgroup of Z," of orderq where q| p-1
* G = "elliptic curve groups



Hardness of Discrete Log

Brute force search: O(n)

Better generic algorithm: O(n!/2)
* Known to be optimal for generic algorithms

Much better algorithms are known for ZP*
e Similar running times to integer factorization
e Still super-polynomial



