COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Authenticated Encryption Syntax

Syntax:
*Enc: KxM 2> C
* Dec: KxC > MU {1}

Correctness:
* ForallkKEK, mEM, Dec(k, Enc(k,m)) = m

Unforgeability

K € K,

¢ € Enc(k,m;)

Output 1 iff:
. c*¢{c,,...}
« Dec(k,c*) # L

"Definition: An encryption scheme (Enc,Dec) is an
authenticated encryption scheme if it is
unforgeable and CPA secure

-

Constructing Authenticated
Encryption

Encrypt-then-MAC

* Inner encryption scheme guarantees secrecy,
regardless of what MAC does

* (strongly secure) MAC provides integrity, regardless
of what encryption scheme does

‘Theorem: Encrypt-then-MAC is an authenticated
encryption scheme for any CPA-secure encryption
\scheme and strongly CMA-secure MAC

v/

Constructing Authenticated
Encryption

Just because MAC-then-Encrypt and Encrypt-and-
MAC are insecure for some MACs/encryption
schemes, they may be secure in some settings

Ex: MAC-then-Encrypt with CTR or CBC encryption
* For CTR, any one-time MAC is actually sufficient

Theorem: MAC-then-Encrypt with any one-time
MAC and CTR-mode encryption is an authenticated
encryption scheme

-

-

k>

F
L

In general, don’t use the
same key for encryption and
authentication

K»> K»>

|
.

Using Same Key for Encrypt and MAC

In general, do not use same key for multiple

purposes

* Schemes may interact poorly when using the same
key

However, some modes of operation do allow same
key to be used for both authentication and
encryption

CCM Mode

CCM = Counter Mode with CBC-MAC in
Authenticate-then-Encrypt combination

Possible to show that using same key for
authentication and encryption still provides security

Today

More Authenticated Encryption

Collision Resistance

Efficiency of Authenticated
Encryption

So far, most modes can be implemented well in
streaming applications

* Only need to read ciphertext once

* Can compute MAC and ciphertext at the same time

However, most modes seen require two block cipher
operations per block

* 1 for encryption

1 for authentication

ldeally, would have only 1 block cipher op per block

OCB Mode

A<« Init(N)
A<«Inc(A) A<Inc,(A) A<Inc3(A) A<Inc4(A) A<Incg(A)
M 1 M- 2 M 3 M. 4 Checksum
G—A H—A DA DA P—A
Y \ \ 4 Y
E; Ex E, E, E,
F inalv
C—Aa P—A DA DA - Auth
ag
A J A J \ Y

OCB Mode

Twice as fast as other block cipher modes of
operation

However, not used much in practice
* Patents!

Another mode: GCM:
* Roughly CTR mode then Carter-Wegman MAC

Deterministic Encryption

Deterministic Encryption

So far, we have insisted on CPA/CCA/Auth Enc
security, which implies scheme must be randomized

However, sometimes deterministic encryption is
necessary

* E.g. encrypting database records

How to resolve discrepancy?

Deterministic CPA Security

b
Challenger
t‘a m,®, m,® i é k € K,
. c() ff c® € Enc(k,m,M)

Where m;(1,...,m,(@ are distinct
and m,),..., m, (¥ are distinct

Achieving Det. CPA Security

ldea? used fixed det. IV
* CTR mode?
e CBC mode?

Better options:

* Derive IV as IV = PRF(k’,m)
* If using Auth Enc, get Det. Auth Enc

e Use “large” PRP: ¢ = PRP(k,m)
e Can get Det. Auth Enc by padding message

Collision Resistant Hashing

Expanding Message Length for MACs

Suppose | have a MAC (MAC,\Ver) that works for small
messages (e.g. 256 bits)

How can | build a MAC that works for large
messages?

One approach:
* MAC blockwise + extra steps to insure integrity
* Problem: extremely long tags

Hash Functions

Let h:{0,1}" = {0,1}™ be a function, m << n

MAC'(k,m) = MAC(k, h(m))
Ver’(k,m,c) = Ver(k, h(m), o)

Correctness is straightforward

Security?
* Pigeonhole principle: I my#m, s.t. h(m,)=h(m,)

Collision Resistance Hashing

Syntax:

* Key Space K, (typically {0,1}*)

» Domain D, (typically {0,1}'® or {0,1}*)

e Range R, (typically §0,1}'® where I'(A)<I(A))
* Function H: K, x D, = R,

Security: for every PPT %, dnegl €
pl"[l‘l(k,xo) = H(k,xl) A thxl:
(X0, %,) € %(k), KEK,] < £(A)

Collision Resistance and MACs

Let h(m) = H(k,m) for a random choice of k

MAC (Kyac:m) = MAC(Kyac, h(m))
Ver'(Kwac:m,o) = Ver(kyac, h(m), o)

For now, think of K as part of key for MAC’

Theorem: If (MAC,Ver) is CMA-secure and H is
collision resistant, then so is (MAC’ Ver’)

Proof

Hybrid O

ky € Ky
Kmac € Kmac

t. < H(ky,m:)
GéMAC(kMAC, "'|)

Output 1 iff:

l m*¢{m,,...}

« Ver(k,t*6*) where
t* € H(k,m*)

Proof

Hybrid 1

ky € Ky
Kmac € Kmac

t. < H(ky,m:)
GéMAC(kMAC, "")

Output 1 iff:

L t*¢{t,,...}

« Ver(k,t*6*) where
t* € H(k,m*)

Proof

In Hybrid 1, negligible advantage using MAC security

Proof

If €. succeeds in Hybrid O but not Hybrid 1, then
« m*¢{m,,...}
* But, t*€{t,,...}

Suppose t* = t,

Then (m;,m*) is a collision for H

Theory vs. Practice

Hashing key is public: even adversary can know it
 What role does it play?

In practice,
* Hash functions are un-keyed

* Hash functions have fixed output size, say §0,1}256

Problem?

We said 128 bit security is usually enough

Why 256-bit outputs?

Birthday Attack

If the range of a hash function is R, a collision can be
found in time T=O(|R[%)

Attack:
* Given key K for H
* Fori=l,.., T,
* Choose random X; in D
o Let +,€H(k,x;)
* Store pair (x;, 1)
* Look for collision amongst stored pairs

Birthday Attack

Analysis:

Expected number of collisions

= Number of pairs x Prob each pair is collision
=~ (T choose 2) x 1/|R|

By setting T=O(IR|*), expectend number of
collisions found is at least 1

= likely to find a collision

Birthday Attack

Space?

Possible to reduce memory requirements to O(1)

Other Security Notions

Collision resistance as a game:

1iff Xo#X,
H(k,x,) = H(k,x,)

Other Security Notions

2nd Preimage Resistance (or target collision
resistance):

1iff Xo#X,
H(k,x,) = H(k,x,)

Other Security Notions

2-Universal:

1iff Xo#X,
H(k,x,) = H(k,x,)

Other Security Notions

One-wayness (or pre-image resistance):

Il iffy = H(K,x,)

Implications

Collision Resistance

v

2"d Pre-image Resistance

v

One-wayness

Domain Extension

Goal: given h that compresses small inputs, construct
H that compresses large inputs

Shows that even compressing by a single bit is
enough to compress by arbitrarily many bits

Useful in practice: build hash functions for arbitrary
inputs from hash functions with fixed input lengths
 Called compression functions

* Easier to design

Merkle-Damgarad

‘Theorem: If an adversary knows a collision for fixed-

length Merkle-Damgard, he can also compute a collision
for h

- J

I

I

Collision OR
(ms=m’g AND
- me 1'5=1"5)

ts
Collision OR
(m,=m’, AND

1'4=1"4)

Collision OR
(m3=m’; AND
1'3=1"3)

Collision OR
(m,=m’, AND
1'231"2)

Proof

|V 1.2

(fixed)

Collision OR
m;=m’,

But, if m1=m'1, then m=m’
|V 1.2

(fixed)

Merkle-Damgarad

So far, assumed both inputs in collision has to have
the same length

As described, cannot prove Merkle-Damgard is

secure if inputs are allowed to have different length

* What if | know an input X such that h(x|lIV) =
IV?

Need proper padding
* Ex: append message length to end of message

Constructing h

Common approach: use block cipher

Davies-Meyer

7
y —b F h(x,y)=xeF(y,x)

Constructing h

Some other possibilities are insecure

]
y —> F > h(x,y)=F(y,x)
]

y 1> F GF > h(x,y)=F(y,x)ey

Constructing h

7
y —b F —@— h(x,y)=xF(y,x)

Why do we think Davies-Meyer is reasonable?

* Cannot prove collision resistance just based on F
being a secure PRP

Instead, can argue security in “ideal cipher” model

* Pretend F, for each key y, is a uniform random
permutation

SHA-1,2,3

SHA-1,2 are hash functions built as follows:

 Build block cipher (SHACAL-1, SHACAL-2)

e Convert into compression function using Davies-
Meyer

* Extend to arbitrary lengths using Merkle-Damgard

SHA-3 is very different

* Compression function built using unkeyed
permutation

* Extension to arbitrary lengths via “sponge
construction”

Basing MACs on Hash Functions

Idea: MAC(K,m) = H(k || m)

Thought: if His a “good” hash function and K is

random, should be hard to predict H(k || m)
without knowing K

Unfortunately, cannot prove secure based on just
collision resistance of H

Random Oracle Model

Pretend H is a truly random function
Everyone can query H on inputs of their choice
* Any protocol using H

* The adversary (since he knows the key)

A query to H has a time cost of 1

MAC in ROM

MACH(k,m) = H(k|Im)
Vert(k,m,c) = (H(kllm) == o)

Theorem: H(k |l m) is a secure MAC in the random
oracle model

Meaning
H&Funcs

Output 1 iff:
* m*¢{m,,...}
 Vert(k,m*,c*)=1

Meaning

H<Funcs

o, € H(k”mi)

lOutput 1 iff:
* m*¢{m,,...}
* I-I(kllm*)::o*

Proof Idea

Value of H(k|lm¥*) independent of adversary’s view
unless she queries H on K||m*

* Only way to forge better than random guessing is to
learn K

Adversary only sees truly rand and indep H values
and MACs, unless she queries H on k|lm; for some i
* Only way to learn k is to query H on k|Im,

However, this is very unlikely without knowing K in
the first place

The ROM

A random oracle is a good

* PRF: F(K,x) = H(klIx)

* PRG (assuming H is expanding):
* Given a random X, H(x) is pseudorandom since adv is
unlikely to query H on X

* CRHF:

* Given poly-many queries, unlikely for find two that map
to same output

The ROM

The ROM is very different from security properties
like collision resistant

What does it mean that “Sha-1 behaves like a
random oracle”?
* No satisfactory definition

Therefore, a ROM proof is a heuristic argument for

security

* If insecure, adversary must be taking advantage of
structural weaknesses in H

When the ROM Fails

MACH(k,m) = H(k||m)
Vert(k,m,c) = (H(kllm) == o)

Instantiate with Merkle-Damgard (variable length)?

35555

(fixed)

When the ROM Fails

ROM does not apply to regular Merkle-Damgard
* Even if h is an ideal hash function

Takeaway: be careful about using ROM for non-

"monolithic” hash functions

* Though still possible to pad MD in a way that makes
is an ideal hash function if h is ideal

HMAC

HMAC

ipad,opad?
* Two different (but related) keys for hash and MAC

* ipad makes hash a “secret key” hash function

* Even if not collision resistant, maybe still impossible
to find collisions when hash key is secret

 Turned out to be useful after collisions found in
MD5

After Spring Break

Wrap up symmetric key cryptography
* Commitment schemes, relationships between
symmetric primitives

Number-theoretic constructions

Public key cryptgoraphy

