COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Midterm Details

Available Monday 3pm

Due Wednesday 1pm
e Submitted via blackboard like the homeworks

Midterms are to be completely individually
Topics: through today’s lecture

Please don’t discuss midterms until 1pm Friday
March 17

Malleability

attackatdawn

attackatdusk

Malleability

Some encryption schemes of operation are malleable
e Can modify ciphertext to cause predictable changes
to plaintext

Examples: basically everything we’ve seen so far
e Stream ciphers

* CTR

* CBC

 ECB

Message Integrity

We cannot stop adversary from changing the
message in route to Bob

However, we can hope to have Bob perform some
check on the message he receives to ensure it was
sent by Alice

* If check fails, Bob rejects the message

For now, we won’t care about message secrecy
e We will add it back in later

Message Authentication Codes

Syntax:

* Key space K,

* Message space M

* Tag space T,

* MAC(k,m) > o

» Ver(k,m,c) > 0/1

Correctness:

* VYm,k, Ver(k,m, MAC(k,m)) =1

Message Authentication Codes

m

23 .
A ‘- J ' (R
.}S m,o X \‘, m,o i (@%
) L\ . -

Ver(k,m’,c’)

Goal: If Eve changed m, Bob should reject

1-time Security For MACs

D G
T\ <(m* " o € MAC(k,m)
| o

Output 1 iff:
* m*#m
* Ver(k,m*c*) = 1
8

1ICMA-AdV(=, A) = Pr[& outputs 1]

a.

/Definition (MACVer) is 1-time statistically secure\
under a chosen message attack (1CMA-secure) if,
for all T, there exists a negligible € such that

1ICMA-AdvV(=, A) < €(A)
\)

Impossibility of Perfect Security?

A Simple 1-time MAC

Suppose H, is a family of pairwise independent
functions fromMto T,

For any my#Em; €EM, 0,,0,ET,

Pricml h(mg)=c, A h(m))=0,] = 1/IT,|?

K=H,
MAC(h, m) = h(m)
Ver(h,m,c) = (h(m) == o)

"Theorem: (MAC,Ver) is 1-time secure, provided T,

is large enough. In particular, for any &,

\

1ICMA-Adv(=, A) = 1/IT,
N Y,

So to have security, just need |T,| to be
superpolynomial
¢ EX: T}\ - {O,].}A

Proof

ldea:

* For every two inputs, outputs are independent

* Therefore, knowing one input/output pair does not
tell you anything about the output at any other
input

Constructing
Independent

Palrwise
-unctions

T = F (finite field of size =2}
* Example: Z, for some prime p

Easy case: let M=F

*H =4¢h(x) =a x + b: a,bETF}

Slightly harder case: Embed M& F"
*H = {h(x) = <a,x> + b: a<F", bETF}

Multiple Use MACs?

Just like with OTP, if use 1-time twice, no security

Why?

+-Time MACs

t times
L m EM » k € K,
@ |- o
: \ (. *) (0] é MAC(klm)
m,o

Output 1 iff:
° m*EE{mpmlmf}
 Ver(k,m*,oc*) = 1

_outputs 1]

tCMA-AdV(%,) = Pr[&

Constructing t-time MACs

|deas?

Unbounded Use MACs

No restriction

D G,

N\

!

(m*,6*)

o € MAC(k,"\')

Output 1 iff:

l- m*¢{m,,...}

 Ver(k,m*c*) =1
)

CMA-Adv(=, A) = Pr[& outputs 1]

a.

/Definition: (MAC, Ver) is statistically secure under A
a chosen message attack (CMA-secure) if, for all

(S
(S)

", there exists a negligible € such that

CMA-Adv(=, A) < €(A)
\)

Impossibility

Theorem: There are no MACs that are statistically
CMA secure

Proof

ldea:

* By making q>>log IK| queries, you should be able
to uniquely determine key

* One key is determined, can forge any message

Problem:
 What if certain bits of the key are ignored
* Intuition: ignoring bits of key shouldn’t help

Proof

Define Fqas follows:

* Challenger chooses random key K

e Adversary repeatedly choose random (distinct)
messages m; in M

* Query the CMA challenger on each m;, obtaining o;

* Let K, be set of keys K’ such that MAC(K’,m;)=0;
fori=l,...,q

* Let r, be the expected size of K’

Claim: If (MAC,Ver) is statistically CMA-secure,
thenr, ¢ ry /2

If not, then with probability at least 74,
Kol > IK',_,1/4

Attack:

* Make g-1 queries on random messages m;

* Choose key K from K’ _;

* Choose random m,, compute oszAC(k,mq)
* Output (mq, cq)

Probability of forgery?

Claim: If (MAC,Ver) is statistically CMA-secure,
thenr, ¢ ry /2

Finishing the impossibility proof:

° T is always at least 1 (since there is a consistent

key)
1o = K|
1 g1, /29 < K|/23
» Setting q > log IK| gives a contradiction

/Definition (MAC,Ver) is (computationally) secure\
under a chosen message attack (CMA-secure) if, for
all PPT 7., there exists a negligible € such that

CMA-Adv(=, A) < €(A)
\)

Constructing MACs

Use a PRF
F:KxM =2 T

MAC(k,m) = F(k,m)
Ver(k,m,s) = (F(k,m) == o)

‘Theorem: (MAC,Ver) is CMA secure assuming l/|T|\

is negligible

-

J

Security Proof

Assume toward contradiction PPT 2.

Hybrids!

Security Proof

Hybrid O

Output 1 iff:
m*¢{m,,...}
* F(k,m*)=0*

CMA Experiment

Security Proof

Hybrid 1

H&Funes(X,Y)

Output 1 iff:
m*¢{m,,...}
e H(m*)=c*

Security Proof

Claim: in Hybrid 1, output 1 with probability 1/|T|
« £ sees values of H on points m;

* Value on m* independent of & ‘s view
» Therefore, probability a*=H(m*) = 1/|T|

Security Proof

Claim: [Pr[1€ Hybl]-Pr[1< Hyb2]| < negl
* Suppose not, construct PRF adversary \T

Constructing MACs/PRFs

We saw that block ciphers are good PRFs

However, the input length is generally fixed
* For example, AES maximum block length is 128 bits

How do we handle larger messages?

Block-wise Authentication?

TTTTT
k- F k- F k- F k- F k- F

4 v 4 \ v
B Bl D I e

Why is this insecure?

Block-wise Authentication?

TTTE T T

k- F k- F k- F k- F k- F

4 v 4 \ v
B Bl D I e

Why is this insecure?

Block-wise Authentication?

T T T

k- F k- F k- F k- F k- F - F
v v v y Vo
I B I I e e

>

Why is this insecure?

Block-wise Authentication?

r a random nonce

TTTT T

k- F k- F k»F k- F k»F»F

4 v 4 \ v \
Il I I IS S e

Secure, but not very useful in practice

CBC-MAC

- T T T T

k- F k- F |k- F |k F
[e I s B

)

-

‘Theorem: CBC-MAC is a secure PRF for fixed-length \
messages

-

Variable Length Messages?

Basic CBC-MAC is insecure for variable length
messages

Attack:

CBC-MAC

Handling Variable-Length
Messages

Option 1:
* Prepend with msg length before applying CBC-MAC
= No two messages will have the same prefix

 Limitation: must know message length when you

start computing MAC

* Not always reasonable if you are authenticating a
stream of data

* Why is appending msg length to end not good?

Handling Variable-Length
Messages

Option 2: Encrypt-Last-Block

T T T
k- F |k~ F |k- F k= F |k-

F
[o A By i B
K> F

'
Q: Why do we need an independent k’ —

Alternate security notions

Strongly Secure MACs

No restriction

s [MEM k<K
D o,

N\

!

(m*,6*)

c € MAC(k,"\')

lOutput 1 iff:

* (m*,6*)&{(m,,0,),...}
» Ver(k,m*,c*) = 1

outputs 1]

SCMA-AdV(S, A) = Pr[&

P
sy

Strongly Secure MACs

Useful when you don’t want to allow the adversary
to change any part of the message

If there is only a single valid tag for each message
(such as in the PRF-based MAC), then (weak) security
also implies strong security

In general, though, strong security is stronger than
weak security

Adding Verification Queries

k € K,
mEM
) G; Ui é MAC(k,m,)
v /<\(m,o)
!\) b b € Ver(k,m,o)
 (m*,c*)

Output 1 iff:
* m*¢{m,,...}
* Ver(k,m*c*) = 1

2 outputs 1]

CMA'-Adv(®., A) = Pr[’

‘Theorem: (MAC,Ver) is strongly CMA secure if and \

-

only if it is strongly CMA’ secure

J

Proof

Strong CMA’ = strong CMA: trivial

Strong CMA - strong CMA'’
ldea: adversary could have always answered
verification queries for himself
* |f adv previously received the message/signature
pair from challenger, then it must be valid
* If adv did not previously receive pair, most likely
invalid
(if not, then we have a strong forgery)

Timing Attacks on MACs

How do you implement check F(k,m)==0?
String comparison often optimized for performance
Compare(A,B):
* Fori=1,..., A.length
* If A[i] != B[i], abort and return False;

* Return True;

Time depends on number of initial bytes that match

Timing Attacks on MACs

To forge a message m:

For each candidate first byte o,:

* Query server on (m, o) where first byte of ¢ is o,
* See how long it takes to reject

First byte is o, that causes the longest response
* If wrong, server rejects when comparing first byte
* If right, server rejects when comparing second

Timing Attacks on MACs

To forge a message m:

Now we have first byte o,

For each candidate second byte o;:

* Query server on (m, o) where first two bytes of o
are 0,0

* See how long it takes to reject

Second byte is o, that causes the longest response

Thwarting Timing Attacks

Possibility:

* Use a string comparison that is guaranteed to take
constant time

* Unfortunately, this is hard in practice, as optimized
compilers could still try to shortcut the comparison

Possibility:

* Choose random block cipher key k'

« Compare by testing F(k’,A) == F(k’, B)

* Timing of “==“ independent of how many bytes A
and B share

Improving efficiency

Limitations of CBC-MAC

Many block cipher evaluations

Sequential

Carter Wegman MAC

k' = (k,h) where:

 k is a PRF key for F:KxR=2>Y

* h is sampled from a pairwise independent function
family

MAC(k’,m):
* Choose a random r€R
* Seto = (r, F(k,r)oh(m))

‘Theorem: The Carter Wegman MAC is strongly CMA \

-

Secure

J

Proof

Assume toward contradiction a PPT =

Hybrids...

Proof

Hybrid O K&K
h
_J
S r, <R
R\ t, <F(k,r)eh(m)

lOutput 1 iff:
o (m*,r*t*)é(m;,r;, 1)}
* F(k,r*)eh(m*)=t*

Proof

Hybrid 1 K&K
h
C J (Distinct 1)
D r <R
1 \ t. €<F(Kk,r)oh(m)

lOutput 1 iff:
o (m*,r*t*)é(m;,r;, 1)}
* F(k,r*)eh(m*)=t*

Proof

Hybrid 2 HEFuncs
h
. (Distinct r;)
D r <R
1 \ t. €H(r)oh(m)

lOutput 1 iff:
o (m*r*+*)é{(m;,r. 1)}
e H(r*)oh(m*)=t*

Proof

Claim: In Hybrid 2, negligible success probability

Possibilities:
* r*¢{r.}: then value of H(r*) hidden from
adversary, so Pr[H(r*)eh(m*)=t*]is 1/1YI

. r*:ri for some i: then m*tmi (why?)
h completely hidden from adversary
PriH(r*)eh(m*)=1*]
= Pr[h(m*)=t*et.oh(m,)] = 1/lYI

Proof

Hybrid 1 and 2 are indistinguishable
* PRF security

Hybrid 0 and 1 are indistinguishable
* W.h.p. random r; will be distinct

Therefore, negligible success probability in Hybrid O

Efficiency of CW MAC

MAC(K’,m):
* Choose a random r<R
*Seto = (r, F(k,r)eh(m))

h much more efficient that PRFs

PRF applied only to small nonce r
h applied to large message m

PMAC: A Parallel MAC

Next Time

Authenticated Encryption: combining secrecy and
Integrity

