
COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Cryptography Is Everywhere

Sign in to add another account

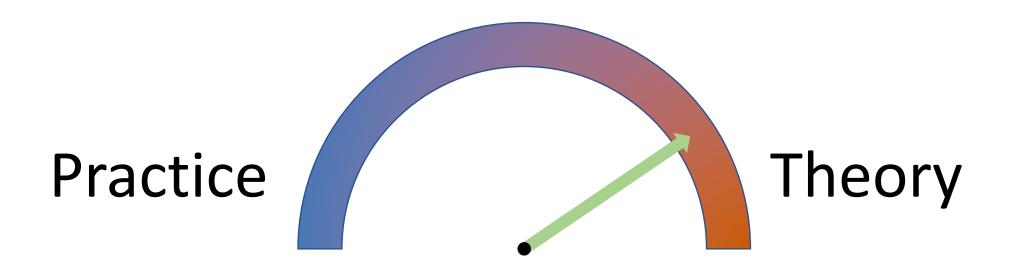
A Long & Rich History

Examples:

- ~50 B.C. Caesar Cipher
- 1587 Babington Plot
- WWI Zimmermann Telegram
- WWII Enigma
- 1976/77 Public Key Cryptography
- 1990's Widespread adoption on the Internet

Increasingly Important

How to Hack an Election in 7 Minutes


With Russia already meddling in 2016, a ragtag group of obsessive tech experts is warning that stealing the ultimate prize—victory on Nov. 8—would be child's play.

By BEN WOFFORD | August 05, 2016

HACK BRIEF: YAHOO BREACH HITS HALF A BILLION USERS

COS 433

Inherent to the study of crypto

- Working knowledge of fundamentals is crucial
- Cannot discern security by experimentation
- Proofs, reductions, probability are necessary

COS 433

What you should expect to learn:

- Foundations and principles of modern cryptography
- Core building blocks
- Applications

Bonus:

- Debunking some Hollywood crypto
- Better understanding of crypto news

COS 433

What you will **not** learn:

- Hacking
- Crypto implementations
- How to design secure systems
- Viruses, worms, buffer overflows, etc

Administrivia

Course Information

Instructor: Mark Zhandry (mzhandry@p)

TA: Fermi Ma (fermima1@g)

Lectures: MW 1:30-2:50pm

Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/

Office Hours: please fill out Doodle poll

Piazza

piazza.com/princeton/spring2017/cos433mat473 s2017

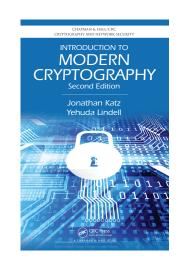
Main channel of communication

- Course announcements
- Discuss homework problems with other students
- Find study groups
- Ask content questions to instructors, other students

Prerequisites

- Ability to read and write mathematical proofs
- Familiarity with algorithms, analyzing running time, proving correctness, O notation
- Basic probability (random variables, expectation)

Helpful:


- Familiarity with NP-Completeness, reductions
- Basic number theory (modular arithmetic, etc)

Reading

No required text

If you want a text to follow along with:

Introduction to Modern Cryptography by Katz, Lindell

For each lecture, page numbers for 2nd edition will be posted on course website

Grading

50% Homeworks

- 1 per week
- Drop lowest 2
- Occasional extra credit problems
- Collaboration encouraged, but write up own solutions

20% Take-home Midterm

- Sometime during midterms week, TBA
- Done individually

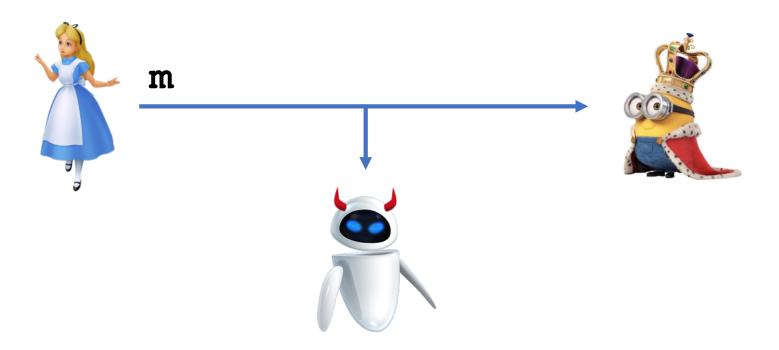
30% Take-home Final

Classroom Policies

Please stop me if you have any questions

Please come to class to be engaged and to learn

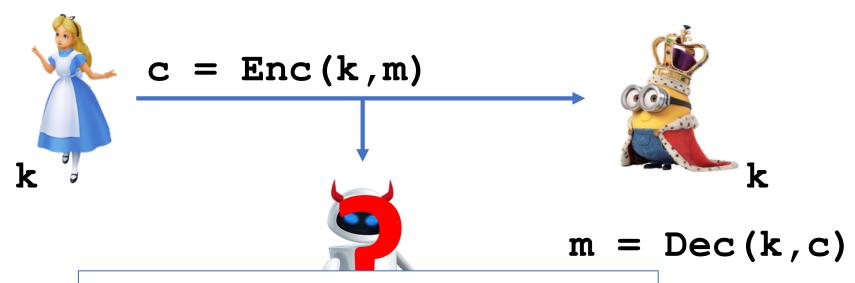
- Notes for each lecture will be added to the webpage
- I don't take attendance
- Don't be on Facebook, working on assignments, etc


Feel free to call me "Mark", "Professor", "Hey You", etc, though "Mark" is preferred

Today: A Brief (Non-Linear) History of Cryptography

Pre-modern Cryptography

1900 B.C. – mid 1900's A.D.


With few exceptions, synonymous with encryption

Pre-modern Cryptography

1900 B.C. – mid 1900's A.D

With few exceptions, synonymous with encryption

For our discussions, assume **Enc**, **Dec** known, only **k** is secret

1900 BC: "Protocrypto"

Inscriptions on monuments to Egyptian pharaohs

- First deliberate transformation of writing
- Method: substitution of hieroglyphs
- Goal: prestige, authority, intrigue

500 B.C. – Atbash Cipher

Alphabet reversal

א	ב	ג	Т	ה	I	7	n	υ	I	2	ל	מ	3	0	ע	פ	Z	ק	٦	ש	ת
ת	ש	7	ק	צ	פ	ע	0	נ	מ	ל	כ	I	ט	ח	٢	I	ה	Т	ג	ב	א

For English alphabet

Example:

plaintext: super secret message

ciphertext: HFKVI HVXIVG NVHHZTV

50 B.C. – Caesar Cipher

Used by Julius Caesar

Alphabet shift by 3

Example:

plaintext: super secret message

ciphertext: VXSHU VHFUHW PHVVDJH

Atbash, Caesar not true ciphers: what's the secret key?

Generalization: Shift Ciphers

Shift by fixed, secret increment (k = 0, ..., 25)

Some examples:

- Shift by 1: Augustus Caesar; Jewish mezuzah
- Shift by 3: Caesar Cipher
- Shift by 13: ROT13

Sometimes also called "Caesar ciphers"

Security of Shift Ciphers?

Problem: only 26 possibilities for key

"Brute force" attack:

- Try all 26 possible shifts
- For each shift, see if something sensible comes out

Example Brute Force Attack

Ciphertext: HJETG HTRGTI BTHHPVT

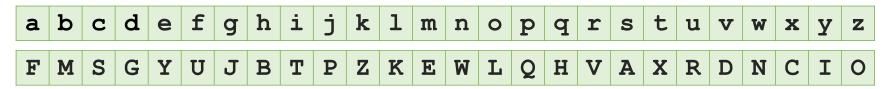
Key	Plaintext
0	HJETG HTRGTI BTHHPVT
1	IKFUH IUSHUJ CUIIQWU
2	JLGVI JVTIVK DVJJRXV
3	KMHWJ KWUJWL EWKKSYW
4	LNIXK LXVKXM FXLLTZX
5	MOJYL MYWLYN GYMMUAY
6	NPKZM NZXMZO HZNNVBZ
7	OQLAN OAYNAP IAOOWCA
8	PRMBO PBZOBQ JBPPXDB
9	QSNCP QCAPCR KCQQYEC
10	RTODO RDBODS LDRRZFD
11	SUPER SECRET MESSAGE
12	TVQFS TFDSFU NFTTBHF

Key	Plaintext
13	UWRGT UGETGV OGUUCIG
14	VXSHU VHFUHW PHVVDJH
15	WYTIV WIGVIX QIWWEKI
16	XZUJW XJHWJY RJXXFLJ
17	YAVKX YKIXKZ SKYYGMK
18	ZBWLY ZLJYLA TLZZHNL
10	ACXMZ AMKZMB UMAAIOM
20	BDYNA BNLANC VNBBJPN
21	CEZOB COMBOD WOCCKQO
22	DFAPC DPNCPE XPDDLRP
23	EGBQD EQODQF YQEEMSQ
24	FHCRE FRPERG ZRFFNTR
25	GIDSF GSQFSH ASGGOUS

Security of Shift Ciphers?

Problem: only 26 possibilities for key

"Brute force" attack:


- Try all 26 possible shifts
- For each shift, see if something sensible comes out

To avoid brute force attacks, need large key space

• On modern hardware, typically need #(keys) $\geq 2^{80}$ (Often use #(keys) = 2^{128} or 2^{256})

Generalization: Substitution Ciphers

Apply fixed permutation to plaintext letters

Example:

plaintext: super secret message

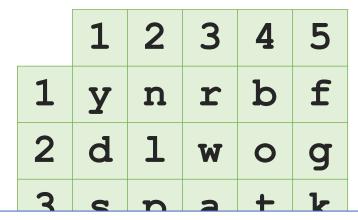
ciphertext: ARQYV AYSVYX EYAAFJY

Number of possible keys?

26! $\approx 2^{88}$ \Rightarrow brute force attack very expensive

Variation: Polybius Square

```
1 2 3 4 5
1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z
```


plaintext: super secret message ciphertext: 4345351542 431513421544 32154343112215

Keyed Polybius Square

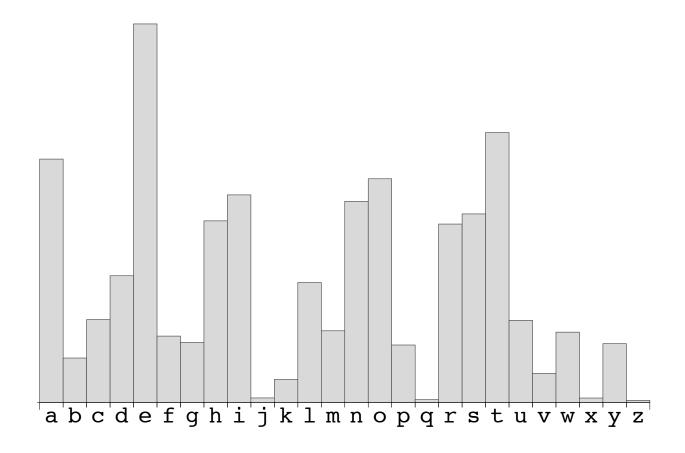
	1	2	3	4	5
1	У	n	r	b	f
2	d	1	W	0	g
3	S	p	a	t	k
4	h	v	ij	x	С
5	q	u	Z	е	m

plaintext: super secret message ciphertext: 3152325413 315445135434 55543131332554

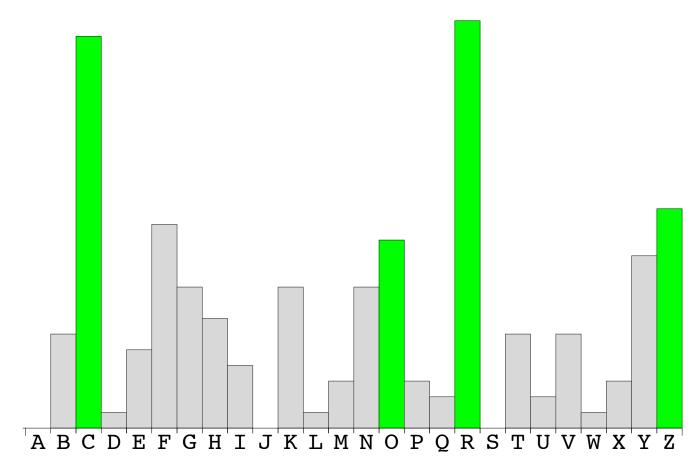
Keyed Polybius Square

Equivalent to plain substitution + unkeyed Polybius

No security advantage over plain substitution


Instead, conceived for ease of transmission

- Signal messages by pairs of sets of torches
- Tapping on prison walls


800's A.D. – First Cryptanalysis

Al-Kindi – Arab philosopher in modern-day Iraq

Some characters are more common than others

BOFC HNR Z NHMNCYCHCYOF KYIVRG CO RFKOBR NRFNYCYPR BZCZ, RPRF CVOHXV CVRE ZGR GRNYTYRFC CO Z MGHCR WOGKR ZCCZKU.
YFBRRB, ME KOHFCYFX TRCCRGN ZFB KODIZGYFX CO CEIYKZT CRQC, EOH KZF GRKOPRG CVR ITZYFCRQC ZN LRTT ZN CVR URE

Reasonable conjecture:

 $e \rightarrow R$, $t \rightarrow C$, $a \rightarrow Z$, $o \rightarrow O$

Boft HNe a NHMNtYtHtyof KYIVeG to eFkoBe
NeFNYtyPe Bata ePef tVoHXV tVeE aGe
GeNYTYeft to a MGHte WoGKe attaKU.
YFBeeB, ME KoHFtYFX TetteGN aFB KoDIaGYFX
to tEIYKaT teQt, EoH Kaf GeKoPeG tVe
ITaYFteQt aN LeTT aN tVe UeE

Maybe "data"? Maybe "attack"?

Probably "the"

a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	x	У	Z
Z				R										0					С						

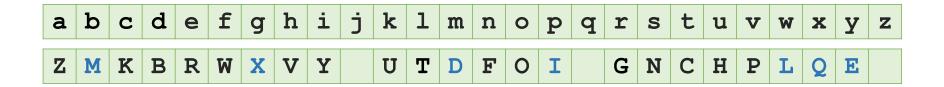
```
doft HNe a NHMNtYtHtyof cylheG to efcode
NefnytyPe data, ePef thoHXh theE aGe
GenyTyeft to a MGHte WoGce attack.

Yfdeed, ME coHftyfX TetteGN afd coDIaGYfX
to tElycaT teQt, EoH caf GecoPeG the
ITayfteQt an LeTT an the keE

"encode"?

"are"?
```

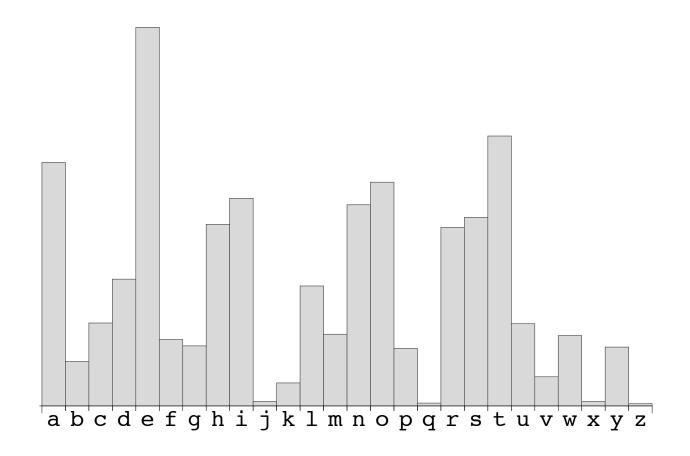
a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	x	У	Z
Z		K	В	R			V			U				0					С						


```
"use"?
dont(Hse)a sHMstYtHtYon cYIher to encode
sensYtYPe data, ePen thoHXh theE are
resYTYent to a MrHte Worce attack.
Yndeed ME coHntYnX TetteGs and coDIarYnX
to tEIYcaT teQt / EoH can recoPer the
ITaYnteQt as LeTT as the keE
  "indeed"? "even"?
                             "recover"?
                 "force"?
```

a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	x	У	Z
Z		K	В	R			V			U			F	0			G	N	С						

dont use a suMstitution ciIher to encode sensitive data, even thouXh theE are resiTient to a Mrute force attack. indeed, ME countinX Tetters and coDIarinX to tEIicaT teQt, Eou can recover the ITainteQt as LeTT as the keE

a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	x	У	Z
Z		K	В	R	W		V	Y		U			F	0			G	N	С	Н	P				


dont use a substitution cipher to encode sensitive data, even though they are resilient to a brute force attack. indeed, by counting letters and comparing to typical text, you can recover the plaintext as well as the key

Defending Against Frequency Analysis

Problem

Differing letter frequencies reveal a lot

Frequency analysis requires seeing many copies of the same character/group of characters

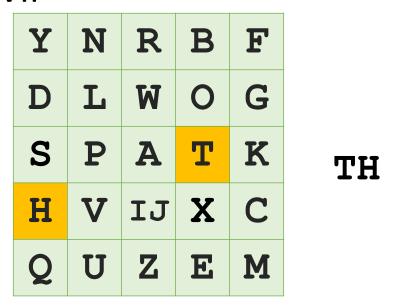
Idea: encode d=2,3,4, etc characters at a time

- Effectively increase alphabet size to 26^d
- Number of repeats seen goes down
 - Most common digram: "th", 3.9%

trigram: "the", 3.5%

quadrigram: "that", 0.8%

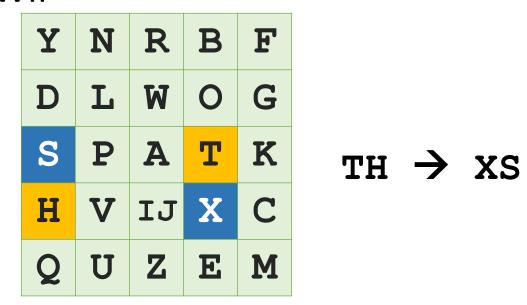
 Require much larger ciphertext to perform frequency analysis


Example: Playfair cipher

- Invented by Sir Charles Wheatstone in 1854
- Used until WWII

Y	N	R	В	F
D	L	W	0	G
S	P	A	T	K
Н	V	IJ	X	С
Q	U	Z	E	M

Example: Playfair cipher


- Invented by Sir Charles Wheatstone in 1854
- Used until WWII

• To encode, choose opposite corners of rectangle

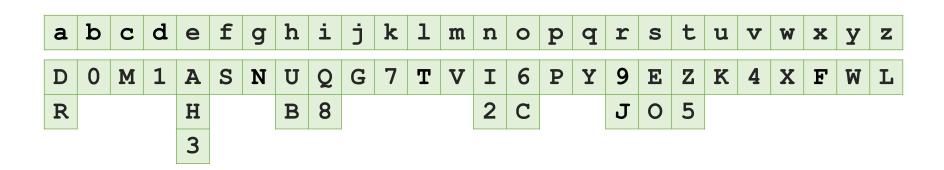
Example: Playfair cipher

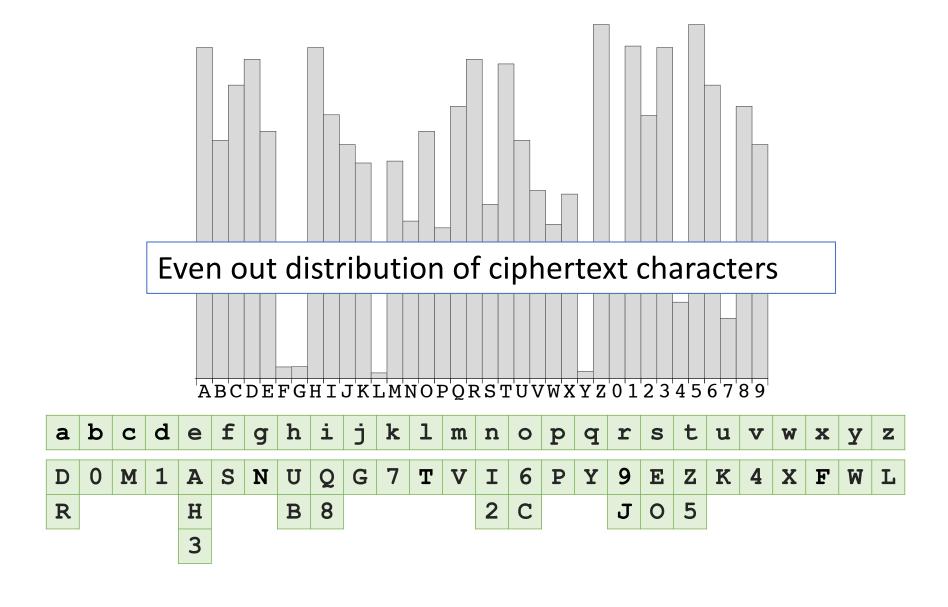
- Invented by Sir Charles Wheatstone in 1854
- Used until WWII

- To encode, choose opposite corners of rectangle
- Additional rules for repeats, digrams in same row, etc.

Limitations:

- For small **d**, frequency analysis still possible by looking at common sequences of **d** characters
- For large **d**, either
 - Uniform random permutation. Needs > 26^d bits to write down key
 - Restricting class of permutations may yield manageable key, but this may start introducing attacks
 - Later on in the course, we will see how to make this work


Ciphertexts use a larger alphabet


Common letters have multiple encodings

To encrypt, choose encoding at random

plaintext: super secret message

ciphertext: EKPH9 O3MJ3Z VAOEDNH

In principle, by using sufficiently large ciphertext alphabet, character frequencies can be made ≈uniform

Thwarts vanilla frequency analysis

However, still possible to break

Frequency analysis on pairs/groupings of letters

Example: "Grand Chiffre" (Great Cipher)

- Developed in 1600's, used by Louis XIV
- Remained unbroken for 200 years
- Combination of polygraphic and homophonic
- 1890's finally cracked by Étienne Bazeries
 - Guessed that "124-22-125-46-345" stood for "les ennemies"
 - From there, things unraveled

Example: Copiale cipher

- 105-page encrypted book written in 1730's
- Secret society of German ophthalmologists
- Not broken until 2011 with help of computers

Polyalphabetic Substitution

Use a different substitution for each character

Example: Vigenère cipher

Sequence of shift ciphers defined by keyword

keyword: crypt ocrypt ocrypto

plaintext: super secret message

ciphertext: ULNTK GGTPTM AGJQPZS

Thwarts vanilla frequency analysis

Cryptanalysis of Vigenère

Suppose we know keyword length

- Group letters into n buckets, each bucket encrypted using the same shift
- Perform frequency analysis on each bucket

Suppose we don't know keyword length

- Brute force: try several lengths until we get the right one
- Improvement: Kasiski examination, superposition

Kasiski Examination

Published 1863, apparently known to Babbage as early as 1840's

Example:

key: cryptocryptocryptocryptocryptocrypto

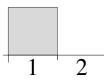
ptxt: acannercancanasmanycansasacannercancans

Ctxt: CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

All RED/PURPLE chunks are multiples of 6 apart

• Good indication that the key length is 1,2,3, or 6

Compare shifts of ciphertext, looking for shifts containing many matches

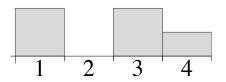

Example: shift by 1

CTYCGS TTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

Compare shifts of ciphertext, looking for shifts containing many matches

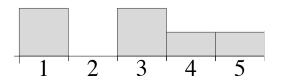
Example: shift by 2 CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG


Compare shifts of ciphertext, looking for shifts containing many matches

Example:shift by 3
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG
CYYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

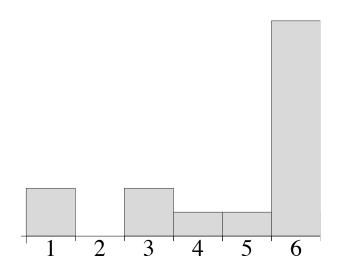
Compare shifts of ciphertext, looking for shifts containing many matches

Example: shift by 4
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

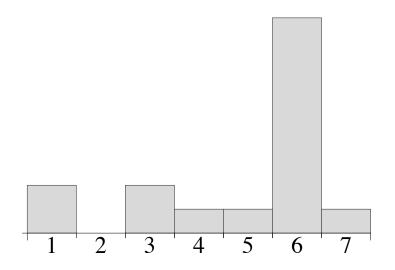


Compare shifts of ciphertext, looking for shifts containing many matches

Example: shift by 5


CTYCG\$TTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG

CTY CGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG


Compare shifts of ciphertext, looking for shifts containing many matches

Example: shift by 6
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGJAPGQCKAPGG
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGJAPGQCEAPGG

Compare shifts of ciphertext, looking for shifts containing many matches

Example: shift by 7
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGQCEAPGG
CTYCGSTTYCVOPRQBTBATYCLOURAPGBGIAPGCCEAPGG

Why does it work?

For shifts that are multiplies of key size:

- Both bottom and top ciphertexts encrypted with same key
- ++(ctxt matches) = ++(ptxt matches)
 ≈ |ptxt| * col. prob. for English
 ≈ |ptxt| * 0.065

Why does it work?

For shifts that are NOT multiplies of key size:

- Both bottom and top ciphertexts encrypted with "independent" shifts
- Probability of a match at any position is 1/26 ≈ 0.038
- ++(ctxt matches) ≈ |ptxt| * 0.038

Disk-based Substitution Ciphers

First Invented by Alberti, 1467

#

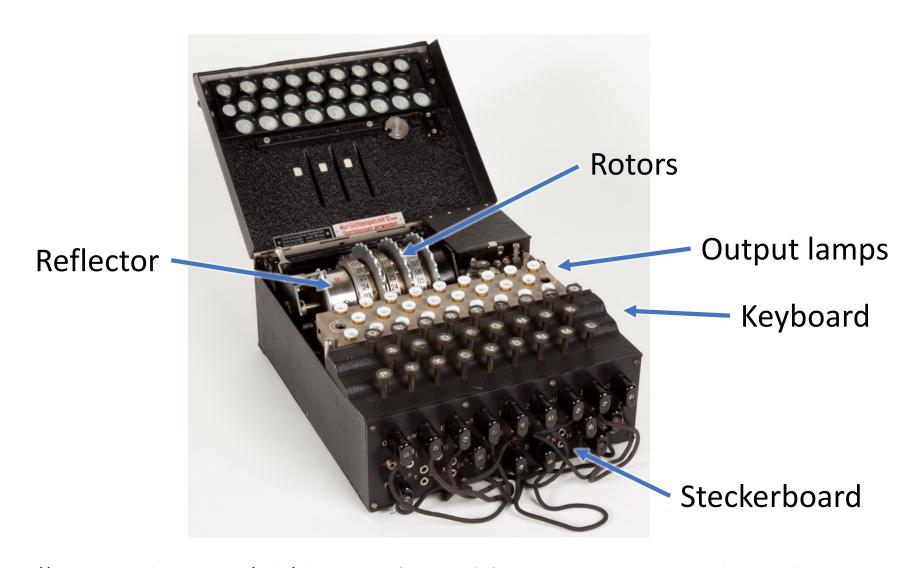
^{*} cropped from http://www.cryptomuseum.com/crypto/usa/ccd/img/301058/000/full.jpg

[†] cropped from https://www.flickr.com/photos/austinmills/13430514/sizes/l

[‡] https://commons.wikimedia.org/wiki/File:Captain-midnight-decoder.jpg

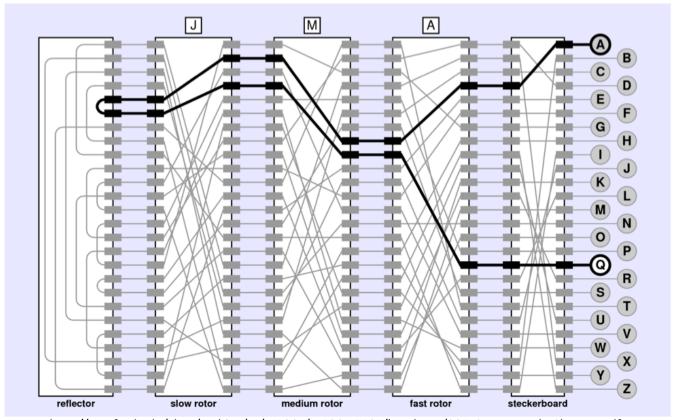
Disk-based Substitution Ciphers

In most basic form, simple monoalphabetic cipher


Alberti Cipher – rotate the disk periodically

Considered the first polyalphebetic cipher

Jefferson disk: used by US military until WWII



The German Enigma Machine

https://commons.wikimedia.org/wiki/File:Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg

Enigma Diagram

http://stanford.edu/class/archive/cs/cs106a/cs106a.1164/handouts/29A-CryptographyChapter.pdf

- With each key stroke, fast rotor rotates by 1
- Each time fast rotor completes a revolution, medium rotor rotates by 1
- Each time medium rotor completes a revolution, slow rotor rotates by 1

Enigma Keys

Key:

- Selection of 3 rotors out of 5 (60 possibilities)
- Initial rotor setting (26³)
- Steckerboard wiring (216,751,064,975,576)

Possible attack strategies?

- Brute force
 - 2⁶⁸ possible keys: feasible today, but not in WWII
- Frequency analysis
 - Polyalphabetic with key length 26³ = 17576
 - Likely no key was used to encrypt enough material

Cracking the Enigma

First developed in Poland, improved by Blechtley Park

User error/bad practices

Known plaintext attack

Often possible to predict part of plaintext

Structural features

- Symmetry
- Cannot map a character to itself
- Steckerboard applies fixed permutation on both ends

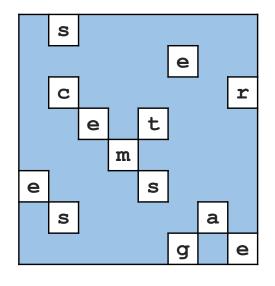
Enigma Diagram

http://stanford.edu/class/archive/cs/cs106a/cs106a.1164/handouts/29A-CryptographyChapter.pdf

A Key Insight: Loops

- Loops unaffected by steckerboard wiring
- Only need to search the $\approx 2^{20}$ rotor positions to find one that generates such a loop
- Possible at the time using the Bombe

Switching Gears: Transposition Ciphers


Shuffle plaintext characters

Greek Scytal (600's B.C.)

https://commons.wikimedia.org/wiki/File:Skytale.png

Grille (1500's A.D.)

a	Ø	h	0	Ø	v	q	k
g	·i	գ	U	Ø	Ø	£	ij
е	C	n	i	d	Z	W	r
g	i	е	b	t	е	b	0
k	С	d	m	i	Z	d	р
е	b	i	d	Ø	h	е	r
n	ത	d	u	٤	Ø	a	v
h	k	Ø	g	u	g	a	ø

Column Transposition

key: crypto

ptxt: supersecremessage

Encryption:

С	r	У	p	t	0	Sort by first row	С	0	p	r	t	У
S	u	р	е	r	Ŋ		S	S	е	u	r	р
е	С	r	е	t	m		е	m	е	С	t	r
е	S	S	а	g	Ф		е	е	а	S	þ	S

ctxt: SEESMEEEAUCSRTGPRS (read off columns)

Cryptanalysis:

- Guess key length, reconstruct table
- Look for anagrams in the rows

Double Column Transposition

key: **graphy**

ctxt0: SEESMEEEAUCSRTGPRS

Encryption:

g	r	a	p	h	У	Sort by first row	a	g	h	p	r	У
S	е	Ф	S	m	\square		Ф	S	m	S	Ф	е
е	е	а	u	С	S		а	е	С	u	Ф	S
r	t	g	р	r	S		g	r	r	р	t	S

ctxt: **EAGSERMCRSUPEETESS**

Example: Germany, WWI

 French were able to decrypt after seeing several messages of the same length

Anagrams and Astronomy

Galileo and the Rings of Saturn

- Galileo observed the rings of Saturn, but mistook them for two moons
- Galileo wanted extra time for verification, but not to get scooped
- Circulates anagram
 SMAISMRMILMEPOETALEUMIBUNENUGTTAUIRAS
- When ready, tell everyone the solution:
 altissimum planetam tergeminum observavi
 ("I have observed the highest planet tri-form")

Anagrams and Astronomy

Enter Huygens

- Realizes Galileo actually saw rings
- Circulates

AAAAAAA CCCCC D EEEEE G H IIIIIII LLLL MM NNNNNNNN OOOO PP Q RR S TTTTT UUUUU

Solution:

annulo cingitur, tenui, plano, nusquam cohaerente, ad eclipticam inclinato

("it is surrounded by a thin flat ring, nowhere touching, and inclined to the ecliptic")

Commitment Scheme

Different than encryption

- No need for a decryption procedure
- No secret key
- But still need secrecy ("hiding")
- Should only be one possible opening ("binding")
- Sometimes other properties needed as well...

If too short (e.g. one, two, three words), possible to reconstruct answer

If too long, multiple possible solutions

Kepler tries to solve Galileo's anagram as

salue umbistineum geminatum martia proles

(hail, twin companionship, children of Mars)

Huygens Discovers Saturn's moon Titan

Sends the following to Wallis

ADMOVERE OCULIS DISTANTIA SIDERA NOSTRIS, UUUUUUUUCCCRR-HNBQX

(First part meaning "to direct our eyes to distant stars")

Plaintext: saturno luna sua circunducitur diebus sexdecim horis quatuor

("Saturn's moon is led around it in sixteen days and four hours")

Huygens Discovers Saturn's moon Titan

Wallis replies with

AAAAAAAA B CCCCC DDDD EEEEEEEE F H
IIIIIIIIII LLL MMMMMM NNNNNN 0000000 PPPPP
Q RRRRRRRRR SSSSSSSSS TTTTTTTT
UUUUUUUUUUUUUU X

(Contains all of the letters in Huygens' message, plus some)

Huygens Discovers Saturn's moon Titan

 When Huygens finally reveals his discovery, Wallis responds by giving solution to his anagram:

saturni comes quasi lunando vehitur. diebus sexdecim circuitu rotatur. novas nuper saturni formas telescopo vidimus primitus. plura speramus

("A companion of Saturn is carried in a curve. It is turned by a revolution in sixteen days. We have recently observed new shapes of Saturn with a telescope. We expect more.")

 Tricked Huygens into thinking British astronomers had already discovered Titan

Lessons

Transposition ciphers should not be considered secure

Substitution ciphers should not be considered secure **unless** polyalphabetic where key has very long period

But, using both together can provide reasonable security if done correctly

Substitution permutation networks

Bifid Cipher

Polybius square + Transposition + Inverse Polybius

	1	2	3	4	5
1	У	n	r	b	f
2	d	1	W	0	g
3	s	р	a	t	k
4	h	v	ij	x	С
5	q	u	Z	е	m

plaintext: super secret message

Polybius: 35351 354153 5533325

12243 145344 5411354

Transpose: 353513541535533325122431453445411354

Inv.Polybius:kkrefkzagnosctchre

Bifid Cipher

Polybius square + Transposition + Inverse Polybius Invented in 1901 by Felix Delastelle

Each ctxt character depends on two ptxt characters

Still possible to break using frequency analysis

Repetition?

- Double Bifid: each ctxt char depends on four ptxt chars
- Triple Bifid: each ctxt char depends on eight ptxt chars

•

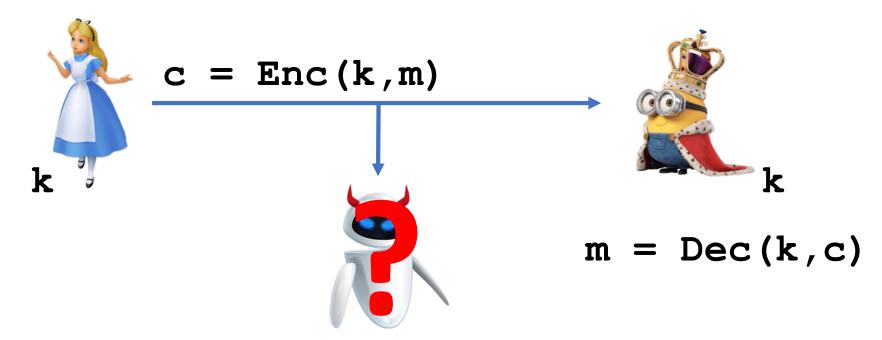
Bifid Cipher

Polybius square + Transposition + Inverse Polybius Invented in 1901 by Felix Delastelle

Each ctxt character depends on two ptxt characters

Still possible to break using frequency analysis

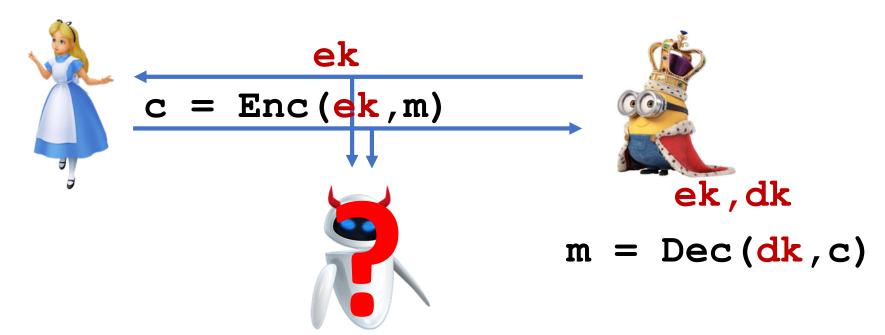
Repetition?


D
 Modern ciphers ensure that every ctxt
 character depends on every ptxt character
 (necessary but not sufficient for security)

nars ars

Mid 1970's – Present

Several key advancements


Asymmetric (public key) cryptography

Mid 1970's – Present

Several key advancements

Asymmetric (public key) cryptography

Mid 1970's – Present

Several key advancements

- Asymmetric (public key) cryptography
- Beyond secrecy
 - Authentication, integrity, commitments, etc
- Rigorous definitions
 - Encrypt same message twice? Part of the message known?
- Formal proofs of security *

^{*} In most cases, some assumptions need to be made

Mid 1970's – Present

Several key advancements

Breaking crypto itself is no longer considered top cybersecurity threat

 Most hacks are the result of system vulnerabilities, social engineering, poor use of cryptography

Starting next time: mathematical ideas behind modern cryptosystems

Next Time

Defining encryption

The one-time pad

Remember: enroll on Piazza