
COS 433: Cryptography Princeton University
Homework 9 Due: May 7, 2017, 11:59pm

Homework 9

1 Problem 1 (50 points)

Recall the S/key system discussed in class. The secret key is sk, a random input,
and the verification key is vk = y0 := Hn(sk), where Hn denotes iterating the hash
function n times. At the beginning of the ith round of identification, Bob is storing
the value yi−1 := Hn−(i−1)(sk). Alice sends the message yi to Bob. Bob verifies that
H(yi) = yi−1. Then Bob updates his state to yi.

One problem with this scheme is that Alice’s running time is on average O(n) per
identification, since she needs to compute yi from sk. One possibility is to pre-compute
all yi values at the beginning, and store them all. However, this now requires O(n)
space for Alice. Alice can also interpolate between these two by storing only every T th
hash; to compute the next message, she will at maximum need to compute T hashes.
In any of these settings, we have ST ≥ n, where S is the storage requirement, and T
is the number of hashes needed in each identification. Since n bounds the number of
one-time passwords, typically n is quite large (e.g. 220), so this time-memory trade-off
is undesirable.

Show how Alice can maintain a state consisting of O(log n) values, and only
require a total of O(n log n) hashes for all n identification rounds. This gives
an amortized cost of O(log n) hashes per iteration.

Hint: The problem naturally corresponds to a certain pebbling game. There are
n positions, numbers 1 through n, corresponding to the n messages Alice will send,
y1, ..., yn (where yn = sk). Some k positions have pebbles, corresponding to the hashes
stored by Alice. At the beginning of round i, the ith position should have a pebble
on it (so Alice can send yi to Bob). The pebble at i is removed (since Alice can forget
yi afterward). Then, you can make a sequence of pebble moves. Given a pebble at
position j, one possible move is to place a pebble at position j − 1 (corresponding to
computing yj−1 = H(yj)). You can also remove any pebble arbitrarily (by forgetting
a hash); removal does not count as a move, only placing. The restriction is that
the total number of pebbles in play never exceeds k, and you want to minimize the
number of pebbles moves during each round. At the end round i, you should be ready
for the next iteration, meaning you have a pebble at i+ 1.

Suppose n = 2k. Suppose your maximum number of pebbles is k + 1. In round i,
after removing the pebble at i, let j be the lowest pebble above i. You will start from
j, and place pebbles at j−1, j−2, ... until you reach i+1. You may not have enough

1



pebbles to leave pebbles at each of j − 1, j − 2, ..., so instead, you will remove most
of the pebbles once you’ve placed the next pebble. However, you will strategically
leave some pebbles behind to make your life easier on future iterations. The number
of moves you will need in this round will be j − (i+ 1).

What pebbling strategy ensures that no more than k + 1 pebbles are ever
in play, and that the amortized number of steps is O(n log n)?

As a further hint, it is possible to set things up so that roughly half the rounds will
require no moves, a quarter will require one move, an eighth will require three, a
sixteenth will require seven, etc (so roughly 1/2` fraction will require 2`−1− 1 moves,
for i = 1, ..., k). Summing up all the moves gives the desired O(n log n).

2 Bonus: Problem 2 (10 points)

Show how to modify the pebbling strategy above so that it takes worst case O(log n)
number of pebble moves per iteration (As opposed to amortized), while preserving
the total storage of O(log n) pebbles.

3 Problem 3 (25 Points)

Let p a prime, and G a group of order p. In class (lecture 15) we saw a random
self reduction for discrete log: given a pair (g, h = ga), you can come up with a new
pair (g, h′ = ga

′
) such that (1) a′ is random and independent of a, and (2) given the

discrete log of the new pair, a′, you can find the discrete log of the old pair, a. To do
so, let h′ = hr for a random r. Then a′ = ar, so it is random and independent of a.
Also, given a′, you can recover a by dividing by r (mod p).

Show such a random self reduction for DDH. That is, you are given a tuple (g, u =
ga, v = gb, w = gc) where a and b are random (in Zp), and c is either ab mod p or also
random. In the random c case, we call this a random tuple. In the c = ab mod p case,
we call this a DDH tuple. Show how to devise a new tuple (g, u′, v′, w′) such that

• If (g, u, v, w) is a DDH tuple, then so is (g, u′, v′, w′). Moreover, the components
of (g, u′, v′, w′) are independent of (g, u, v, w). For example, even if u = g2, v =
g3, w = g6 (so there is no entropy and the discrete logs are fixed), (g, u′, v′, w′)
should be a random DDH tuple.

• If (g, u, v, w) is not a DDH tuple, so that c 6= ab mod p, then (g, u′, v′, w′) is
a random tuple. Moreover, the components of (g, u′, v′, w′) are independent of
(g, u, v, w). For example, even if u = g2, v = g3, w = g5, (g, u′, v′, w′) should be
a (at least statistically close to a) uniformly random tuple.

2



The transformation from (g, u, v, w) to (g, u′, v′, w′) must be efficient: you cannot
compute discrete logs as part of the transformation.

Note that the following simple transformations will not work:

• (g, ur, v, wr). This is a DDH tuple if (g, u, v, w) was a DDH tuple, and isn’t a
DDH tuple if (g, u, v, w) isn’t. However, it is not independent of the original
tuple. For example, the third component is identical.

• (g, ur, vs, wrs). This is a DDH tuple if and only if (g, u, v, w) is, but still isn’t
independent of the original tuple. For example, if (g, u, v, w) is random, we
have that c/ab = c′/a′b′ mod q. Therefore, there is a relationship between the
new elements and the old elements. Instead, we expect if (g, u, v, w) is random,
that all of the terms in the two tuples (g, u, v, w), (g, u′, v′, w′) are random and
independent (except of course the g terms).

4 Problem 4 (25 points)

Here, you will show that computing discrete logs mod a composite integer N = pq
is as hard as factoring N . In other words, you are given an algorithm A such that
given g, h ∈ Z∗N , A efficiently computes an integer x such that gx mod N = h. (Note
that in general Z∗N is not cyclic, so the discrete log is not guaranteed to exist. The
algorithm for discrete logs is only guaranteed to work when the discrete log exists).
Show that given A, you can factor N .

Hint: recall from your previous homeworks that recovering a multiple of φ(N) is
sufficient to recover the factors of N . Explain how to use a discrete log algorithm to
compute a multiple of φ(N).

3


	Problem 1 (50 points)
	Bonus: Problem 2 (10 points)
	Problem 3: 25 Points
	Problem 4: (25 points)

