COS 433: Cryptography Princeton University
Homework 8 Due: April 25, 2017, 11:59pm

1
(a)

Homework 8

Problem 1 (20 points)

Let Fy, F be two supposed one-way functions. Say you know that one of Fy, F}
is a secure one-way function, but the other is not. However, you do not know
which one. Construct a new one-way function F' that is secure as long as at
least one of Fjy, ] are secure, but not necessarily both. Prove the one-wayness
of F relying on just the security of Fy or F}

Let (Geng, Fy, Fy '), (Geny, Fi ', FT1) be two supposed trapdoor permutations,
and suppose the domain for both trapdoor permutations is the same set X' (since
they are permutations, the co-domain is also X’). Suppose you are guaranteed
that both are in fact permutations, but one of the two may be insecure. You do
not know which one. Construct a new trapdoor permutation (Gen, F, F~1) that
is secure as long as at least one of (Geng, Fy, Fy '), (Geny, Fy, Fi') is secure, but
not necessarily both.

Let (Geng, Encg, Decy), (Geny, Ency, Dec;) be two public key encryption schemes.
Suppose you are guaranteed that both are correct, in that decrypting an en-
cryption of m recovers m. However, only one of the schemes is CPA-secure,
and you don’t know which. Construct a new encryption scheme (Gen, Enc, Dec)
that is CPA secure, provided at least one of the two schemes is CPA-secure.

Let (Geng, Sign,, Very), (Geny, Sign,, Ver;) be two digital signature schemes. Sup-
pose you are guaranteed that both are correct, in that signatures will verify.
However, only one of the schemes is CMA-secure, and you don’t know which.
Construct a new signature scheme (Gen, Sign, Ver) that is CMA-secure, provided
at least one of the two schemes is CMA-secure.

The constructions you present above are called combiners. With some extra work,
the construction from part (a) can be turned into a universal one-way function: a
one-way function that is secure, provided that some one-way function exists (but
you don’t need to know the one-way function). The same goes for the encryption
combiner. Unfortunately, these universal constructions are of little use in practice.



2 Problem 2 (15 points)

In class, we saw how to construct CCA-secure public key encryption from trapdoor
permutations. To encrypt, you choose a random r, and let ¢g = F(pk,r), and ¢; =
Encsxr(H(r), m). That is, you “encrypt” r using the trapdoor permutation, and then
you hash r with H, and encrypt the message m using H(r) as the key. We showed
that in the random oracle model, assuming F' represents a trapdoor permutation and
Encskp is a CCA-secure secret key encryption scheme, the resulting construction is
secure.

Show that if F' is instead an injective trapdoor function, the scheme may not be
secure. To do this, devise a secure injective trapdoor function (Gen, F, F~') such
that, when you plug into the construction above, the resulting scheme is not CCA
secure. Hint: while correctness determines how F~! behaves on valid outputs of F
(that is, points of the form F(pk,z) for some z), on invalid points, ! can behave
arbitrarily.

3 Problem 3 (35 points)

(a) One way to block the attack from Problem 2 is to have the decrypter verify
that ¢q is a valid output of the trapdoor function. Explain how the decrypter,
who knows the secret key sk to invert, can verify whether or not ¢y is a valid
output of the trapdoor function.

(b) Show how, if the decrypter performs this check, a CCA adversary for the scheme
in Problem 2 may be able to do the following: given a supposed output y, check
if y is a valid output of F'. The adversary does this by performing a CCA query.
What properties of Encgix g — the underlying secret key CCA-secure encryption
scheme — do you need to guarantee that the adversary correctly determines the
validity of y?

(c) Construct an injective trapdoor function (Gen, F, F~!) that is insecure if you
can test for validity. That is, (Gen, F, F~!) should satisfy the following:

(1) Correctness: Pr[F~!(sk, F(pk,x)) = x : (sk, pk) < Gen()] =1
(2) Security: (Gen, F, F~!) is a secure injective trapdoor function

(3) Suppose the adversary, in addition to receiving pk and y* = F'(pk,z*) for
a random z*, has access to an oracle that tells her whether or not a given
y is a valid output of F'. Then the adversary can determine x* by craftily
choosing several query values vy, ..., and testing if they are valid outputs
of F.



Hint: consider the following injective TDF F' built from a TDP F'. F(pk,z) =
(F'(pk,x),x1). That is, F' is just F’, except that it additionally outputs the
first bit of . It is possible to prove that F'is a secure injective TDF if F’ is a
TDP. Moreover, an output (y, b) is valid if and only if b is equal to the first bit
of the pre-image of y.

Show how to build on this idea to construct a TDF F' satisfying the properties
needed above.

4 Problem 4 (30 points)

Consider the following modification of the scheme from Problem 2. Key generation
is still just the key generation for the TDP.

e Enc(pk,m): choose arandom r, and let co = F(pk,r). let ¢; = Encsxr(H(r), (m,r) ).
That is, use the hash of r to encrypt the pair (m,r). Output ¢ = (co, ¢1).

e Dec(sk, (¢, c1)): First, use the procedure from problem 3a to determine if ¢y is
a valid output of F. If not, abort and output L. Then, let r = F(sk, cg). Let
(m,r") = Decskxp(H(r),c1). Finally, check that r = 7’; if not, abort and output
L. Finally, output m.

(a) Show that the scheme above is secure in the random oracle model by modifying
the proof we saw in class. You should assume that (Encgx g, Decsip) is a CCA-
secure secret key encryption scheme, and that (Gen, F, F~!) is a secure injective
trapdoor function (but not necessarily a permutation).

(b) Bonus (10 Points) Explain what goes wrong in the above proof if you used
the original encryption scheme where ¢; = Encggp(H(r),m) and you remove
the check in decryption that » = /. (We know the scheme might be insecure,
so the proof cannot work in this case)

Thus, using the injective TDF from Diffie-Hellman we saw in class, we have a CCA-
secure public key encryption scheme in the random oracle model.



	Problem 1 (20 points)
	Problem 2 (15 points)
	Problem 3 (35 points)
	Problem 4 (30 points)

