
COS 433: Cryptography Princeton University
Homework 7 Due: April 18, 2017, 11:59pm

Homework 7

1 Problem 1 (25 points)

Let N = pq be the product of two primes. In this problem, we will see that, in
addition to p and q being large, it is important that p− 1 and q− 1 have large prime
factors.

(a) Suppose you know an integer r that is a multiple of p−1, but not q−1. Explain
how to factor N .

(b) Suppose p− 1 is t-smooth (recall that this means all of the factors of p− 1 are
at most t). Explain how to compute an integer r that is a multiple of p − 1.
Your r should be no larger than about pt (so its bit length is at most t log2 p),
and should take time polynomial in t and log2 p to compute.

(c) You are not quite done, as your multiple r might also be a multiple of q − 1.
Explain how to detect this case.

(d) If your r is a multiple of both p−1 and q−1, then show how to derive a different
integer r′ that is a multiple of p− 1 but not q− 1, or vice versa. Assume p 6= q
(if p = q, we can easily factor by taking square roots).

One option to avoid this attack is to choose p, q to be safe primes, which means that
(p− 1)/2 and (q − 1)/2 are also prime. However, this is not actually necessary, as it
turns out that a random large prime p will, with high probability, have p− 1 not be
smooth.

2 Problem 2 (35 points)

Let N = pq be the product of two large unknown primes. In the RSA problem, you
are given an integer e such that GCD(e, φ(N)) = 1, and your goal is to compute eth
roots mod N .

One potential way to compute eth roots is to compute an integer d such that ed
mod φ(N) = 1. Here, we will show that computing such a d from e is as hard as
factoring.

1



(a) Show, given e and d, how to compute a value r that is a multiple of φ(N).

(b) If we were lucky and r = φ(N), explain how to recover p and q.

In general, r might be a large multiple of φ(N), so the above does not directly work.
Instead, let r = 2k × s for some odd s. Consider the following. Choose a random
g ∈ Z∗N . Then compute g0 = gs mod N, g1 = g2s mod N, g2 = g4s mod N, . . . , gk =
g2

ks = gr mod N .

(c) Explain how to compute s and k from r

(d) Prove that g0 is not equal ±1 mod N . However, note that gk = 1 mod N .
Therefore, there is some i such that gi = 1 mod N but gi−1 6= 1 mod N .

(e) Prove that with reasonable probability (over the choice of random g), gi−1 6= −1
mod N . For this problem, it will be useful to use Chinese Remaindering to
think about the sequence g0, . . . , gk mod p and mod q. What does it mean that
gi−1 6= −1 mod N but gi = 1 mod N?

(f) If you were lucky enough go choose a g such that gi−1 6= −1 mod N , explain
how to factor N .

(g) At a high level, explain why this does not mean computing eth roots is as hard
as factoring.

3 Problem 3 (20 points)

Recall that in the ElGamal cryptosystem, the public key is a pair (g, h) where g is a
generator for a group G of prime order, and h = ga where a ∈ Zp is the secret key.
To encrypt a message m ∈ G, choose a random r and output (gr, hr ×m).

(a) Suppose you have two ElGamal ciphertexts c0, c1 encrypting m0 and m1, re-
spectively, where m0,m1 are unknown. Show how to devise a new ElGamal
ciphertext c2 which encrypts m0 × m1. You only know the public key and
the ciphertexts; you do not know m0,m1, the secret decryption key a, or the
encryption randomness.

Thus, ElGamal is multiplicatively homomorphic: given two ciphertexts, it is
possible to devise a new ciphertext that encrypts the product of the two plain-
texts knowing just the public key.

(b) Let c be an ElGamal ciphertext encrypting an unknown message m. Show how
to devise another ElGamal ciphertext c′ encrypting m. c′ should look like a fresh

2



random ciphertext: its distribution should be the same as if you encrypted m
from scratch, and should be independent of c (except that it encrypts the same
message). As before, you know only the public key and the ciphertext; you do
not know m, a, or the encryption randomness.

Thus, ElGamal is re-randomizeable, meaning you can take a ciphertext, and
produce a fresh looking ciphertext that encrypts the same message.

Recall that in the Goldwasser-Micali (GM) cryptosystem, the public key is (N, x)
where N is the product of two large secret primes, and x is a quadratic non-residue
mod N . To encrypt a bit b, choose a random r ∈ ZN , and compute xbr2 mod N .

(c) Suppose you have two GM ciphertexts c0, c1 encrypting bits b0 and b1, respec-
tively, where b0, b1 are unknown. Show how to devise a new GM ciphertext c2
which encrypts b0 + b1 mod 2 = b0 ⊕ b1. You only know the public key and the
ciphertexts; you do not know b0, b1, the secret decryption key, or the encryption
randomness.

Thus, GM is additively homomorphic: given two ciphertexts, it is possible to
devise a new ciphertext that encrypts the sum (mod 2) of the two plaintexts
knowing just the public key.

(d) Let c be an GM ciphertext encrypting an unknown message b. Show how
to devise another GM ciphertext c′ encrypting b. c′ should look like a fresh
random ciphertext: its distribution should be the same as if you encrypted b
from scratch, and should be independent of c (except that it encrypts the same
message). As before, you know only the public key and the ciphertext; you do
not know b, the secret key, or the encryption randomness.

Thus, GM is also re-randomizeable.

Thus, we can construct both additively homomorphic and multiplicatively homomor-
phic schemes. For a long time, it was unknown if it was possible to construct schemes
that were both of these simultaneously, which is called fully homomorphic. We now
know how to achieve this, though the construction is beyond the scope of this course.

4 Problem 4 (20 points)

Consider the following variant of ElGamal. There is a group G of prime order p, as
well as `+ 1 generators g, g1, . . . , g` that were sampled randomly, and which everyone
knows.

The secret key is a string v ∈ {0, 1}`. Write v = (v1, . . . , v`) for bits vi ∈ {0, 1}.
The public key is g, g1, . . . , g`, together with h = gv11 × gv22 × · · · × g

v`
` . To encrypt a

3



message b ∈ 0, 1, choose a random r ∈ Zp, and compute (gr1, g
r
2, . . . , g

r
` , h

r × gb). To
encrypt multiple bit messages, simply encrypt each bit independently.

(a) Explain how to decrypt, given the secret key v.

(b) Given nothing but the public key, show how to devise for each i a “ciphertext”
(c1, ..., c`, d), such that when fed into the decryption procedure from part (a),
outputs vi. Thus, it is possible to devise a “ciphertext” that decrypts to the
secret key v, without knowing v

(c) Explain why the ciphertext constructed in (b) is not a ciphertext that would
have been produced by the encryption procedure applied to vi.

(d) Show how to re-randomize ciphertexts for this scheme, analagous to ElGamal.

(e) If you apply re-randomization to the ciphertext from part (b), explain why
the new ciphertext still would never have been produced by the encryption
procedure.

Thus, in this scheme, the secret key holder can devise a ciphertext that encrypts the
secret key itself, and give it out. This will not hurt security, since the encryption
of the secret key could have been generated by anyone. With some more effort, it
is possible to have the secret key holder actually encrypt the secret key as specified
by the encryption algorithm, and still have security. While it is in general unsafe to
encrypt your own secret key, this situation does arise in a few natural settings such
as disk encryption. A “circularly secure” encryption scheme like above can be useful
in such settings.

4


	Problem 1 (25 points)
	Problem 2 (35 points)
	Problem 3 (20 points)
	Problem 4 (20 points)

