
COS 433: Cryptography Princeton University
Homework 3 Due: February 28, 2017, 11:59pm

Homework 3

1 Problem 1 (15 points)

Let PRG be a pseudorandom generator. Consider the following attempt at building
a stateless many-use encryption scheme. Enc(k,m) chooses a random string IV of
length λ (here, λ is the length of the key), and then runs x ← PRG(IV, k) (that is,
run PRG on the string obtained by concatenating IV and k). Finally, it computes
c ← x ⊕ m. The ciphertext is the pair (IV, c). Dec(k, (IV, c) ) uses IV and k to
compute x, and XOR’s x and c to recover m.

Devise an example of a PRG PRG such that the above encryption scheme using PRG
is insecure even for a single message. That is, PRG should satisfy the definition of a
secure PRG, but Enc should not satisfy one-time computational security.

You may assume as a building block a secure pseudorandom generator PRG′, which
you can use to build your PRG. Your construction must work (that is, yield an
insecure encryption scheme) for any PRG′, as long as PRG′ is a secure PRG; do not
assume any particular structure on PRG′. Remember to prove the security of PRG
assuming the security of PRG′ using a reduction.

2 Problem 2 (25 points)

Let PRF be a pseudorandom function with domain {0, 1}m and range {0, 1}n. Prove
that the following are each also pseudorandom functions:

• PRFa has domain {0, 1}m−1 and range {0, 1}2n. PRFa(k, x) = PRF(k, x||0)||PRF(k, x||1).

• Assume n = 2k. PRFb has domain {0, 1}m+k and range {0, 1}. Given an input
x ∈ {0, 1}m+k, partition x as x′ ∈ {0, 1}m and i ∈ {0, 1}k. PRFb(k, x

′||i) =
PRF(k, x′)i. That is, output the ith bit of PRF(k, x′).

• Let h : {0, 1}` → {0, 1}m be any injective function (that is, a function where
there do not exist any pairs of inputs x 6= y such that h(x) = h(y)). PRFc has
domain {0, 1}` and range {0, 1}n, and is defined as PRFc(k, x) = PRF(k, h(x)).

• Let PRG be a secure PRG. Assume n = λ. Define PRFd(k, x) = PRG(PRF(k, x)).
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3 Problem 3 (10 points)

Let PRF be a pseudorandom function with domain {0, 1}m and range {0, 1}. Assume
m > log λ. Use PRF to construct a secure PRG, and prove its security assuming only
the security of PRF.

4 Problem 4 (50 points)

Consider the following notions of security for encryption schemes.

(i) Left-or-Right (LoR) Indisitnguishability. This is the notion of security
we saw in class

(ii) Real-or-Random Plaintext (RoRP) Indistinguishability. This security
notion is defined by the following experiment. The adversary makes polynomially-
many queries to the challenger on messages m in the message space. The chal-
lenger responds to the queries as follows. If it’s input bit is b = 0, then the
challenger encrypts m to get a ciphertext c, which it returns to the adversary.
If the challenger’s input bit is b = 1, then the challenger chooses a new random
message m′ and encrypts m′ to get a ciphertext c, which it then returns to
the adversary. Security is defined in the usual way: for any efficient adversary
A, there is a negligible function ε(λ) such that the adversary has at most ε(λ)
advantage in distinguishing b = 0 from b = 1.

(iii) Real-or-Random Ciphertext (RoRC) Indistinguishability. This secu-
rity notion is defined by the following experiment. The adversary makes polynomially-
many queries to the challenger on messages m in the message space. The chal-
lenger responds to the queries as follows. If it’s input bit is b = 0, then the
challenger encrypts m to get a ciphertext c, which it returns to the adversary.
If the challenger’s input bit is b = 1, then the challenger chooses a random string
c in the ciphertext space C, which it then returns to the adversary. Security is
defined in the usual way: for any efficient adversary A, there is a negligible func-
tion ε(λ) such that the adversary has at most ε(λ) advantage in distinguishing
b = 0 from b = 1.

(iv) Real-or-Zero (RoZ) Indistinguishability. This security notion is defined
by the following experiment. The adversary makes polynomially-many queries
to the challenger on messages m in the message space. The challenger responds
to the queries as follows. If it’s input bit is b = 0, then the challenger encrypts
m to get a ciphertext c, which it returns to the adversary. If the challenger’s
input bit is b = 1, then the challenger encrypts m′ = 0 to get a ciphertext c,
which it then returns to the adversary. Security is defined in the usual way:
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for any efficient adversary A, there is a negligible function ε(λ) such that the
adversary has at most ε(λ) advantage in distinguishing b = 0 from b = 1.

Some of these notions are equivalent (in the sense that if (Enc,Dec) satisfies one
notion, then it must also satisfy the other), and some are stronger than others (in
the sense that if (Enc,Dec) satisfies notion (a), it must satisfy notion (b), but there
are examples of schemes that satisfy (b) but not (a)). Your goal is to figure out the
relationships between each of these security notions.

Your solution will contain several proofs of statements of the form: “if (Enc,Dec)
satisfies notion (a), then it also satisfies notion (b)” (this can succinctly be stated as
“notion (a) implies notion (b)”).

Note that you do not necessarily need to prove all implications: if notion (a) implies
notion (b) and notion (b) implies notion (c), then you can conclude without proof
that notion (a) also implies notion (c).

Your solution will also contain some proofs of statements of the form: “There exist
(Enc,Dec) satisfying notion (a) but that does not satisfy notion (b)” (this can be suc-
cinctly stated as “notion (a) does not imply notion (b)). For these kind of statements,
you may assume as a starting point a secure PRG, a secure PRF, or an encryption
scheme satisfying any of the notions above (LoR, RoRP, RoRC,RoZ), which you then
use to build your (Enc,Dec) counter example.

Again, note that you do not necessarily need to prove all implications. For example,
if (a) does not imply (b), but (c) does imply (b), then you can conclude without proof
that (a) does not imply (c).

There are a total of 12 statements to decide on (for every pair of notions (a) and
(b), you must decide whether or not (a) implies (b) and whether or not (b) implies
(a)). As a hint, it is possible to select 5 statements, prove those, and then derive
the remaining 7 from these 5. You will not be penalized or rewarded based on the
number of statements you prove; if you prove all 12 directly, that is fine (though it
will be more work on your part).

5 Bonus: Problem 5 (10 points)

Consider the following additional security notion:

(v) Real-or-Complement (RoC) Indistinguishability. This security notion is
defined by the following experiment. The adversary makes polynomially-many
queries to the challenger on messages m in the message space. Assume the
message space is {0, 1}n for some n. The challenger responds to the queries
as follows. If it’s input bit is b = 0, then the challenger encrypts m to get a
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ciphertext c, which it returns to the adversary. If the challenger’s input bit is b =
1, then the challenger encrypts m′ = m⊕1n — the bitwise complement of m —
to get a ciphertext c, which it then returns to the adversary. Security is defined
in the usual way: for any efficient adversary A, there is a negligible function
ε(λ) such that the adversary has at most ε(λ) advantage in distinguishing b = 0
from b = 1.

Add this notion to Problem 4, and decide how this notion relates to the other four
notions as you did before. There are 8 more statements to decide on (two statements
each for comparing RoC to the notions from Problem 4. As before, some of the
statements can be derived from others).
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