
COS 533: Advanced Cryptography Princeton University
Lecture 9 (October 11, 2017)
Lecturer: Mark Zhandry Scribe: Udaya Ghai

Notes for Lecture 9

1 Last Time

Last time, we introduced zero knowledge proofs and showed how interactive zero
knowledge proofs could be constructed from OWFs.

2 This Time

While zero knowledge proofs are interesting, an interactive protocol can be pretty
limiting for some applications. Today, we will work towards zero knowledge proofs in
a non-interactive protocol. We will introduce two new settings, the common random
string CRM) model where the prover and verifier share some randomness, and the
hidden bits model, which also deals with shared randomness, but restricts the random
bits the verifier can see.

3 A Motivating example: CCA-secure PKE

Idea: Suppose (Gen,Enc,Dec) is CPA-secure. We can define a new scheme where we
run Gen twice.

(pk0, sk0)← Gen(), (pk1, sk1)← Gen()

((pk0, pk1), (sk0, sk1))← Gen′()

Enc′((pk0, pk1),m) = (Enc(pk0,m),Enc(pk1,m))

Decryption is defined analogously. We can try to prove CCA security using a hybrid
argument. Let m0,m1 be a challenge, so an adversary needs to be able to distinguish
between Hybrid 0, where the challenger encrypts m0, and Hybrid 2, where the
challenger encrypts m1. This is differentiating between

Enc′((pk0, pk1),m0) = (Enc(pk0,m0),Enc(pk1,m0))

1

and
Enc′((pk0, pk1),m1) = (Enc(pk0,m1),Enc(pk1,m1))

We introduce Hybrid 1 where the challenger returns

(Enc(pk0,m0),Enc(pk1,m1))

The idea here is to use an adversary A that can differentiate between Hybrid 0 and
Hybrid 1 with nonnegligible probability to break CPA-security of (Gen,Enc,Dec).
Unfortunately, this doesn’t quite work, but we can make this work if we were able
to include a zero knowledge proof that the ciphertext is well formed (proof that the
same message is used for both parts). Unfortunately, for this to be of any use here,
the proof must not involve interaction.

4 Settings for Non-interactive Zero Knowledge (NIZK)

Suppose we use the existing definition of zero knowledge, except restrict the commu-
nication to one message, π∗ from the prover to the verifier. A prover P has x and a
proof π and the verifier V just has x. Like our interactive zero knowledge proofs, the
protocol must satisfy soundness and zero knowledge.

Soundness: If x is false, it’s impossible for P to convince V that x is true.

Zero knowledge: There exists a simulator S that produces a view of the verifier that
is computationally indistinguishable from the actual view.

π∗ ← S(x) ≈c π∗ ← P (x, π)

These two properties can not both be fulfilled. If the prover just ran S(x) and passed
this to V , V would be fooled. In a sense, without interaction, our simulator is now
too powerful. We get around this by introducing two new settings.

1. Common Random String (CRS) Model
In this setting, the prover and verifier have access to shared randomness, crs←
{0, 1}n.

2. Hidden Bits Model
This is similar to the CRS model, but it’s asymmetric. P has access to all
the bits of crs, but this time sends L ⊆ [n] to V , and V only has access to
crsL = (crsi)i∈L.

In both of these models,a simulator for the verifier will have it’s own crs.

2

5 Construction of NIZK in Hidden Bits

We will construct NIZK for the Hamiltonian cycle problem. We can reduce other
NP-complete problems to get NIKZs for specific problems.

Let G = ([n], E), so all vertices are labeled by integers. P will have G along with a
hamiltonian cycle c. V will just have the graph G.

We will assume that crs ∈ {0, 1}n×n is a cycle matrix (all rows and all columns have
exactly one 1. crs needs to be random, but we will address this later. The cycle
represented by this matrix is σ

Let f be a random permutation f : [n]→ [n] such that f(c) = σ

Protocol:

• P will send π∗ = f and L = f(Ē), where Ē is all edges not in E.

• V will confirm that L = f(Ē) and crsL = 0|L|. If both are satisfied V will
accept.

Soundness:
If G does not actually contain a Hamilitonian cycle c, we can’t find an f such that
f(c) = σ, as c must not be a cycle. Thus, for any f , crsf(Ē) must contain a 1, and
the V will reject.

Zero knowledge:
A simulator S chooses a random σ, so f will be a random permutation. From here
V sees a random permutation f , L = f(Ē), and crs bits that are all 0. If there was
indeed a hamiltonian cycle, this is indistinguishable from an actual view of V .

We do have one problem that still needs to be solved. Our crs is still not actually
random. This is dealt with by choosing a crs ∈ {0, 1}n4

where each bit of the matrix is

1 with probability
1

n3
. We can then consider crs′ to be the subset of rows and columns

containing exactly one 1. We claim (without proof) that the resultant matrix is a

cycle matrix with probability >
1

n3
. 1. This results in very poor soundness, but we

can boost our soundness via parallel repetition (n3λ times should do). As usual, we
should be careful that repetition does not break zero knowledge. In this case, it’s

1This can be proved using Chebychev’s inequality to lower bound the probability of having
exactly n ones, and then handle the probability that each row and column has more than one 1. See
http://www.cs.umd.edu/ jkatz/gradcrypto2/NOTES/lecture13.pdf, for a similar result

3

okay, because we are in a non-interactive setting and can collect all our messages and
send at once.

We do still need to resolve how we generate a 1 with probability
1

n3
for our crs. This

can be done with log(n3) bits for each index in our crs matrix. All of these bits will

be 1 with probability
1

2log(n3)
=

1

n3
. All in all, our crs← {0, 1}n7λ log(n3).

6 Conversion of hidden bits NIKZ to CRS NIKZ

We will now show how to tranlate a hidden bits protocol to CRS. Let PHB, VHB be
the hidden bits prover and verifier. Suppose we have a OWP, p : {0, 1}λ → {0, 1}λ,
with a hardcore bit h. Let crs← ({0, 1}λ)n

Prover P (x, π):

1. Compute αi ← p−1(crsi).

2. Let crsHB = h(αi).

3. Run π∗HB ← PHB(x, π, crsHB)

4. Send verifier (π∗HB, L, {αi}i∈L, {crsHBi}i∈L)

Verifier V (x, (π∗HB, L, {αi}i∈L, {crsHBi}i∈L)):

1. Check that p(αi) = crsi.

2. Check that ∀i ∈ L, h(αi) = (crsHB)i.

3. Run VHB((crsHB)L, x, π
∗
HB)

The intuition of this protocol is that all hidden bits are now hardcore bits. Sound-
ness follows from the soundness of the original protocol and the fact that the αi and
crsHB are verified against the crs. Zero knowledge follows by thinking of αi as ran-
dom, and the idea that applying a permutation to random bits produces random bits.

Simulator S:

1. Run (π∗, L, (crsHB)L)← SHB(x)

2. For i ∈ L choose αi such that h(αi) = (crsHB)i

4

3. for i 6∈ L chose αi at random

4. crsi = p(αi)

5. Output (crs, π∗, {αi}i∈L, (crsHB)L)

7 Making the prover efficient

While the previous construction works, it wouldn’t work in practice because the prover
is inefficient. This is because the prover is required to invert p. This can be solved
by using a trapdoor permutation.

Definition 1 A trapdoor permutation is a triple (Gen, p, p−1) where (sk, pk)← Gen(1λ),
where y ← p(pk, x) is a permutation and x← p−1(sk, y). For security, we need p(pk, ·)
to be a OWP for a random pk.

Replacing all uses of the permutation p with trapdoor permutations (and adding pk
to the proof) gets us an efficient prover.

Prover P (x, π):

1. (sk, pk)← Gen(1λ)

2. Compute αi ← p−1(sk, crsi).

3. Let crsHB = h(αi).

4. Run π∗HB ← PHB(x, π, crsHB)

5. Send verifier (pk, π∗HB, L, {αi}i∈L, {crsHBi}i∈L)

Verifier V (x, (π∗HB, L, {αi}i∈L, {crsHBi}i∈L)):

1. Check that p(pk, αi) = crsi.

2. Check that ∀i ∈ L, h(αi) = (crsHB)i.

3. Run VHB((crsHB)L, x, π
∗
HB)

5

8 Construction of Trapdoor Permutation

There is only one known construction of a trapdoor permutation.

• Gen chooses large primes p, q, where N = pq.

• Choose a random e such that gcd(e, (p− 1)(q − 1)) = 1

• d = e−1 mod (q − 1)(p− 1)

• Let pk = (N, e), sk = (N, d)

• p(pk, x) = xe mod N

• p−1(sk, y) = yd mod N

This defines a trapdoor permutation over [N].

6

	Last Time
	This Time
	A Motivating example: CCA-secure PKE
	Settings for Non-interactive Zero Knowledge (NIZK)
	Construction of NIZK in Hidden Bits
	Conversion of hidden bits NIKZ to CRS NIKZ
	Making the prover efficient
	Construction of Trapdoor Permutation

