
COS 533: Advanced Cryptography Princeton University
Lecture 7 (October 4, 2017)
Lecturer: Mark Zhandry Scribe: Stefan Tiegel

Notes for Lecture 7

Information Theoretic Multiparty Communication

In the last lecture we saw how to construct an MPC protocol relying on the Decisional
Diffie-Hellman assumption, this time we will construct an information-theoretically
secure protocol. To this end, we will first introduce Shamir’s Secret Sharing.

Shamir’s Secret Sharing

Last lecture we saw an n-out-of-n secret sharing protocol, meaning that all n users
together are able to reconstruct the message, but already n − 1 users fail to learn
anything about it. Shamir’s Secret Sharing is a t-out-of-n protocol, meaning that
already t ≤ n users together can learn the message, but any t − 1 do not learn
anything. We only give a brief description of it.

The protocol works as follows: First, fix a field F, such that |F| > n and let the
messages be elements of the field. For a fixed message m, the dealer now chooses a
random degree t−1 polynomial f over F (by choosing its coefficients randomly, except
for the constant) which satisfies f(0) = m. He then sets the shares to shi = f(i).
To reconstruct, t users can learn the whole function f by interpolating it and thus,
also evaluate m = f(0). Furthermore, it can be shown that t − 1 users have but a
negligible chance to learn m. We now use this scheme to define our MPC protocol.

The BGW Protocol (Ben-Or, Goldwasser, Wigder-

son)

The BGW protocol is a secure multiparty communication protocol, as long as the
adversary knows the views of at most t − 1 players, for some fixed t. As a function
we would like to compute an algebraic circuit over F and every player has the input
value of one wire. Note, that this is not a restriction from Boolean Circuits, since we
can express the boolean operators as follows: x ∧ y = x · y, x ∨ y = x+ y − x · y, and
¬x = 1− x.

1

At the beginning of the protocol, every player secret shares his input value to everyone
else using Shamir’s t-out-of-n scheme where t is the fixed value from above. Thus,
after this everyone has shares for all input wires of the circuit. We now want to
compute the function wire by wire. For gate g we denote its inputs by xu and xv and
its output by xw. The share of user i we call shu,i, shv,i, or shw,i respectively. Also, let
fu, fv, and fw denote the functions defined by the respective shares. We now discuss
how to compute the output shares of the different type of gates.

Computing + and - Gates

First, we will start with + and - gates. Note, that this also yields a way to compute
multiplication by a constant. For a + or - gate we now set:

shw,i = shu,i ± shv,i = fu(i)± fv(i) = (fu ± fv)(i)

And indeed, (fu ± fv) has degree t − 1 and (fu ± fv)(0) = xu ± xv = xw as desired.
Next, we will turn our attention to × gates.

Computing × gates

As a first idea, we could try a similar approach as before: Set sh′w,i = shu,i · shv,i =
fu(i) · fv(i) = (fu · fv)(i). And indeed, we have (fu · fv)(0) = xu · xv = xw, however,
since both fu and fv are polynomials of degree t − 1, it follows that fw = (fu · fv)
might have degree up to 2t− 2, which is too high! In this case, we would need 2t− 1
players to reconstruct and this number would grow with every multiplication gate.
Thus, we would like to obtain shares of xw using only polynomials of degree t − 1,
i.e., we would like to find a polynomial f of degree t− 1, such that f(0) = xw.

In order to do so, the players have to communicate with each other. Specifically, every
user i computes his share sh′w,i of (fu · fv)(0) and secret shares it to everyone using
Shamir’s scheme with a polynomial gw,i of degree t− 1 and gw,i(0) = sh′w,i. Call the
share user j obtained from this shw,i,j = gwi

(j). We claim that this is enough to locally
compute shares of xw. To show this, we need the concept of Lagrange interpolation,
a simple scheme for interpolating functions which will serve our purpose well.

2

Intermezzo: Lagrange Interpolation

Suppose we are given distinct elements x1, . . . , x2t−1 ∈ F, then a degree 2t − 2
polynomial f over F can be written as follows:

f(x) =
2t−1∑
k=1

f(xk) ·

(∏
l 6=k

x− xl
xk − xl

)

One property that will be especially useful for us, is that for a given x we can
write f(x) as a linear combination of the f(xk).

In our setting, we can now fix xi = i and thus, have a way to represent fw = fu · fv
in the above form. Remember, that we do not necessarily care about the fw but
rather about the fact that every user can compute a share of xw = fw(0). Lagrange
interpolation allows us to write this as:

fw(0) =
2t−1∑
k=1

fw(k) ·

(∏
l 6=k

xl
xk − xl

)

Using the fact, that fw(0) is a linear combination of fw(k) and that we secret shared
the shares of fw(k) it now follows from our previous results (that shares for ± gates
and multiplications by a constant can be computed locally), that now every player is
able to compute his share of fw(0). More specifically, player i can now compute:

shw,i =
2t−1∑
k=1

shw,k,i ·

(∏
l 6=k

i− xl
xk − xl

)
=

2t−1∑
k=1

gw,k(i) ·

(∏
l 6=k

i− xl
xk − xl

)

Furthermore, we have:

fw(0) =
2t−1∑
k=1

gw,k(0) ·

(∏
l 6=k

xl
xk − xl

)
=

2t−1∑
k=1

sh′w,k ·

(∏
l 6=k

xl
xk − xl

)

=
2t−1∑
k=1

(fu · fv)(k) ·

(∏
l 6=k

xl
xk − xl

)
= (fu · fv)(0) = xu · xv = xw

and since t players together can reconstruct gw,k(0) it follows that they can also
reconstruct fw(0) as desired.

3

Security

Here, we only give a sketch of the security proof. The main intuition is as follows: At
every step, each user ”reveals” their value only through the t-out-of-n secret sharing
scheme and thus, the adversary can learn nothing as long as he only sees the views
of t− 1 players. One crucial part in the construction is that 2t− 1 ≤ n ⇐⇒ t < n/2
must hold, since otherwise we can’t use Lagrange Interpolation. Thus, we need what
is called an ”Honest Majority”. Interestingly enough, it turns out that this is in fact
optimal, i.e., as soon as we have a ”Dishonest Majority”, we cannot construct an
information-theoretically secure MPC protocol. One consequence of this is that we
cannot have information-theoretic security for 2PC.

Garbled Circuits

As we saw towards the end of the last section, computational security is the best we
can hope for in the case of 2PC. Garbled Circuits are another mean to realize this,
which turned out to have also a lot more application in Cryptography. On a high
level they work as follows: A player would like to compute the value of a circuit on
a given input, however, the circuit is only known to some other entity who does not
wish to reveal anything about it to the player. Thus, he wants to give to the player a
so called garbled circuit and a set of input labels which allow the player to compute
the value of the circuit on his input, but in such a way that nothing else about the
circuit is revealed.

More formally, we define the following two algorithm:

• Garble(1λ, C)→ {Li,b}i∈[n],b∈{0,1}, Ĉ

• Eval(Ĉ, {Li,xi}i∈[n]) = C(x)

where λ as usual is the security parameter, C is the circuit we wish to compute, {Li,b}
the set of input labels, and Ĉ the garbled circuit. Furthermore, n is the length of
x, i.e., the number of input wires of C. Security can be defined using a simulation
security style definition like we saw last lecture, informally, we require that someone
given Ĉ and {Li,xi}i∈[n] for some x can only learn C(x) and nothing else about C,
especially not C(x′) for some x′ 6= x.

2PC using Garbled Circuits

In this section, we show how we can easily construct at 2PC protocol using garbled
circuits, so for now we assume they exist and we can build them, we will show how to

4

do so in the next section. Suppose we have players A and B and they wish to compute
C(x). To put it in the words of our previous definition: Let C be the input of A, x
be the input of B, fA(C, x) = ∅, and fB(C, x) = C(x). The protocol is now as follows
(here λ is the previously specified security of the protocol): A invokes Garble(1λ, C)
to obtain {Li,b}i∈[n],b∈{0,1} and Ĉ. She now sends Ĉ to B, and wishes to send B all
the input labels he needs to compute C(x) but not more. B now wants to select these
labels corresponding to x without revealing x. They can achieve this by engaging in
an oblivious transfer (OT) for each i from 1 to n. After that, B can compute C(x).
Note, that during the OT A learns nothing about the bits of x and B learns nothing
about the input labels he didn’t choose. Thus, security of the protocol now follows
from the security of Garbled Circuits.

Yao’s Garbled Circuit

We now describe one construction of Garbled Circuits which is due to Yao, this re-

quires a CPA-secure encryption scheme. For each wire w we choose 2 keys kw,0, kw,1
$←

{0, 1}λ which correspond to a value of 0 and 1 on the wire. For every input wire i,
set Li,b = ki,b. Now, for every gate g with input wires u, v and output wire w,
b0, b1 ∈ {0, 1} let dw,b0b1 be the following:

dw,b0b1 = Enc(ku,b0 , Enc(kv,b1 , kw,b2))

where b2 = g(b0, b1) is the output of gate (i.e., also the value of w) on input u, v. We
compute dw,b0b1 for all four possible pairs of b0b1.

Let xw be the value on wire w when computing C(x). We now claim that given {Li,xi}
and {dw,b0b1} for all w we can compute kw,xw for all w. Note, that we have ki,xi for all
input wires i, thus, we will try to compute the circuit gate by gate. Suppose g is a gate
with input wires u, v and output wire w, we now do the following: For all four elements
in {dw,b0b1} we try to decrypt twice to obtain kw,xw . Since we have ku,xu and kv,xv this
can be done and one of the encryptions will be kw,xw . Note, that for this to work we
need that decryption returns something unintelligible if we use the wrong key, one
possible way to ensure this would be to pad the keys with a sufficiently long pattern
(say a long string of 0s), making it unlikely that decryption with the wrong keys
would yield exactly this pattern. Thus, we set Ĉ = {{dw,b0b1} for all wires w}, kout,1,
where out denotes the output wire. Since kout,1 was chosen at random it reveals
nothing about the value of the output. However, it allows us to know the value of
xout whenever we have kout,xout by simply comparing the two. It follows, that given

Ĉ and {Li,xi}i∈[n] we can compute C(x).

While this gives a valid Eval function it does not satisfy our security definition for
two reasons:

5

First, if the {dw,b0b1} are always ordered in the same way (e.g., 00,01,10,11) then we
can learn the value of the input wires of the gate by simply checking which decryption
succeeded with respect to this ordering. Thus, we can reconstruct the whole circuit.
To remedy this, we will choose a random ordering for {dw,b0b1} for each w and hence,
whoever decrypts cannot do non-negligibly better than guessing what the input values
were.

Second, while the scheme hides the actual gates of the circuit it does not hide its
topology. Meaning, that we cannot learn the gates themselves but we can learn how
they are connected to each other. This of course violates our security definition. To
get around it, we introduce the notion of universal circuits. A universal circuit is a
function (a circuit) U taking as arguments a circuit C ′ and an input x to C ′. It then
simulates the execution of C ′ on x and returns, C ′(x), i.e., U(C ′, x) = C ′(x). If we
now want to garble a circuit C, what we instead to is garble a universal circuit U(C, ·)
with C hardcoded as a parameter. Note that the scheme described above still works
in the same way, but since U has a fixed topology which is publicly known anyway,
the Garble function know satisfies our security definition.

Outlook

Until now we have only considered the ”Honest-but-Curious” setting for multiparty
computation. In the next lecture we would like to drop the honesty assumption which
will serve as an introduction to the topic of Zero-Knowledge Proofs.

6

