
COS 533: Advanced Cryptography Princeton University
Lecture 5 (9/27)
Lecturer: Mark Zhandry Scribe: Eitan Zlatin

Notes for Lecture 5

1 Last time (Not previously!) on COS 533:

Authentification - MACs and Signature Schemes.

2 This time on COS 533: A thrilling episode

• Describe how to create digital signatures from OWF.

• Multiparty Comunication (MPC)

3 1-time Weak Signatures from OWF

Consider a OWF F : {0, 1}λ → {0, 1}m(λ)

The following is a 1-time weak signature scheme called lamport signatures on messages
on length n:

• Gen(1λ) :

xi,b
$← {0, 1}λ, i ∈ [n], b ∈ {0, 1}

yi,b = F (xi,b)

sk = (xi,b)∀i∈[n],b∈{0,1}

pk = (yi,b)∀i∈[n],b∈{0,1}

• Sign(sk,m) = (xi,mi
)∀i∈[n]

• Ver(pk,m, (Zi)∀i∈[n]) :

Output 1 iff F (Zi) = yi,mi
∀i ∈ [n]

Theorem 1 If F is an OWF, (Gen,Sign,Ver) is a weakly EUF-CMA secure one time
signature scheme.

1

Intuition: If the adversary could sign a different message than the one message she
gets to see, she must have inverted the OWF on all the points where the two messages
differed.

This however, is not two time secure. A 2-time adversary could trivially query on 0n,
and 1n, causing the challenger to reveal the whole secret key.

Note that this is only weakly secure. Let F
′

be another OWF, with a one bit smaller
domain. If F (x) = F

′
(x[1,λ−1]), in essence ignoring the last bit of the input, it can be

easily shown that F is still a OWF. However an adversary who sees a signature on m
could easily create another signature by flipping the last bit of every xi revealed in
the previous signature, which would still be evaluated the same by the OWF.

4 q-time Weakly Secure Digital Signature Scheme

Intuition: Just use q one time signatures.

This will be a stateful scheme, as it will remember how many signatures it has already
signed.

• Genq(1λ) :

Run (ski, pki)← Gen(1λ) for i = [1, q]

sk = (ski)∀i∈[1,q]

pk = (pki)∀i∈[1,q]

• Sign(sk,m): for the ith message signed output (i, sign(ski,m))

• V er(pk,m, (i, σ)) = V er(pki, σ)

While this works, it is non-ideal. First problem is that public key size grows with q,
which will limit us if we want to create a many time scheme.

5 Shrinking the public key

We will discuss a tree with only three levels, but you can imagine how to extend it
to more.

Diagram:

2

Pk

Pk0 Pk1

Pk00 Pk01 Pk10 Pk11

Gen stays the same. In essence, we only want to output Pk, but then want to be able
to sign with all the leaf secret keys. So we will use Pk to prove that the public keys
associated with those secret keys are in fact ours.

Sign(sk,m) on bob1...th message outputs the following.

The signature itself and the public key associated with it: σ = Sign(skb0b1 ,m) and
Pkb0b1 .

Proof that the pkb0b1 was not created by an adversary:

pkb0b̄1 (We need to output this as well, because we won’t be able to sign with skb0
again, as we are using a one time scheme)

σb0b1 = Sign(skb0 , pkb0b1||pkb0,b̄1)
pkb0 , pkb̄0

σb1 = Sign(sk, pkb0||pkb̄0)
One problem is that in our 1-time scheme, the length of the public key increase in
the length of the message you have to sign. This causes a blow up in the size of the
public key to m(λ) ∗ 2n.

Solution: Use a different one time signature key that can sign any length messages
with only a constant size public key.

Next Steps:

• Generate the tree on the fly to reduce the size of sk.

• Make tree size exponential in λ, so we will never run out of leaves, giving us a
many time scheme.

• Make stateless

3

6 Multi-Party Computation(MPC)

Today: 2 Party Communication (2PC)

Diagram:

Ax By

Alice has a secret value x, and Bob has a secret value y. Alice wants to learn fA(x, y)
and bob wants to learn fB(x, y) However, we want to make sure Bob doesn’t learn x
and Alice doesn’t learn y. This is impossible in general - if fA(x, y) reveals the value
of y, Alice must learn y. We will therefore change our requirment so that Alice only
learns fA(x, y), and nothing more about y, and Bob only learns fB(x, y) and nothing
more about x.

Today we will focus on a specific case of 2PC, called oblivious transfer(OT).

x = (x0, x1) y = b (a single bit)

fA(x, y) = ∅
fB((x0, x1), b) = xb

Basically, Alice wants to learn one of the messages x0 or x1 from Bob without revealing
witch one she wants. Bob doesn’t want her to learn anything about the message she
didn’t choose.

Let p be a large prime s.t q = 2p + 1 is also a prime.

Z∗q = {1, ...q − 1}
Then there exists a subgroup G ⊂ Z∗q with order p. There also exists a generator g
for G s.t G = {g0, g1, ...gp−1}
(Not fully covered in lecture, but I think we want to pick this specific subgroup
because it is one we are confident the DDH assumption (covered later) will be true
on)

4

Alice
x0, x1 ∈ G
u, b ← Zp

Check if gt0 = gt1 , if so abort.
hb = (gtb)u ∗ (gs)v = gtbu+sv

Bob with bit b
r, s ← Zp
tb = r ∗ s
t1−b =← Zp

(hbxb)/(w
s) = grsu+sv ∗xb/(ws) =

grsu+sv ∗ xb/(grsu+sv) = xb

gr, gs, gt0, gt1

h0x0, h1x1

Receiver’s (Bob’s) Privacy:

Trivial to prove under the Decision Diffie Hellman (DDH) assumption, which states:
(gr, gs, grs) is indistinguishable from from (gr, gs, gt), where r, s, t← Zp

In essence, DDH cane be applied on gr, gs and gtb to show that the Alice basically
sees the generator raised to 4 random group elements.

Sender’s Privacy:

Claim if tb = rs and t1−b 6= tb then h1−b is random in G, even condition on r,s,t0, t1,
hb, and w.

hb = gtbu+sv = ws, so we can ignore Bob’s hb information, as it can be recovered from
the other values.

Pr[h1−b = gz|w = gy]

= Pru,v[t1−bu+ sv = z|ru+ v = y]

= Pru[t1−bu+ s(y − ru) = z]

= Pru[u = (z − sy)/(t1−b − rs)] = 1/p

Note that the division is well defined by our assumption that t1−b 6= rs

We assumed that our adversaries are ”Honest-but-curious”. they don’t deviate from
the protocol, but are curious about the other value.

5

7 Next time on COS 533

We will cover general 2 Party Computation.

Ax By

We will assume fA(k, y) = ∅, and allow any fB(x, y)

This is enough as long as the parties are honest, as they can just run the algorithm
in twice.

If the parties are allowed to deviate from the protocol, it is impossible in general
for both parties to learn their functions. Assume Bob sends the final message in the
protocol. This means Bob must have already recovered fB(x, y), as he will get no
more information. He can then choose not to send the final message and prevent A
from learning her function. This is called the issue of fairness.

6

	Last time (Not previously!) on COS 533:
	This time on COS 533: A thrilling episode
	1-time Weak Signatures from OWF
	q-time Weakly Secure Digital Signature Scheme
	Shrinking the public key
	Multi-Party Computation(MPC)
	Next time on COS 533

