
COS 533: Advanced Cryptography Princeton University
Lecture 24 (December 13, 2017)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 24

1 More Quantum Algorithms

1.1 Period Finding

We think of basis states |x〉 as vectors in Znq . Recall that what the Quantum Fourier
Transform (QFT) does the following:

QFT |x〉 =
1√
qn

∑
y∈Zn

q

ω〈x,y〉q |y〉

where wq = e2πi/q. Last time, we used this to solve the discrete log problem. Es-
sentially we did period finding. We defined f(x, y) = gxh−y, applied the QFT, and
(roughly) the answer popped out. We can also write this function as f(x, y) = gx−ay

where ga = h.

Observe that

f((x, y) + (a, 1)) = g(x+a)−a(y+1) = gx−ay = f(x, y).

This function has the nice property that if I add any multiple of (a, 1) the function
stays the same. This is a periodic function, meaning that there’s a number or vector
such that if I add this number or vector the function stays unchanged.

The quantum algorithm for discrete log recovers this period.

1.2 Shor’s Algorithm for Factoring Integers

It turns out that the problem of factoring integers can be rephrased as a period-
finding algorithm. Let N = pq (this algorithm works for any N , but this assumption
will make things simpler for today).

Step 1) We want to find non-trivial square roots of 1 mod N . The trivial square
roots are 1 and −1, but there are two more. Recall that the Chinese Remainder
Theorem tells us that ZN ∼= Zp × Zq is useful here. Since 1 mod N is also 1 mod p
and 1 mod q, we know that the square root must be ±1 mod p and ±1 mod q. If

1

we pick +1 or −1 for both mod p and mod q, then we get one of the trivial square
roots.

However, if we pick +1 mod p and −1 mod q or −1 mod p and +1 mod q, these
correspond (via the Chinese Remainder Theorem) to a non-trivial square root of 1.
For example, if x is 1 mod p and −1 mod q, we know that x+1 is not a multiple of N
since it’s 2 mod p, but it is a multiple of q. So we can take recover q as gcd(x+1, N).

Step 2) We claim we can find non-trivial square roots of 1 with period finding. First
we randomly pick a← Z∗N (this is the multiplicative group of integers mod N which
consists of the integers relatively prime to N) We know there exists some r such that
ar = 1 mod N simply because Z∗N is a finite group.

What is ar/2? This is a square root of 1 as long as r is even. It turns out that over the
random choice of a, there is a constant probability that ar/2 is a non-trivial square
root of 1.

Consider the function f(x) = ax mod N . This function is periodic since f(x+ r) =
ax+r mod N . So we choose a random a, define this function f , and then find the
period using the QFT, and then hopefully ar/2 is a nontrivial square root of 1.

The problem is that we don’t know r. But suppose we had a multiple M of r (it
turns out we won’t really have a multiple of r either, but we’ll deal with that later).
Then we can do the following

1. We construct the state

|ψ〉 =
1√
M

M−1∑
x=0

|x〉

2. Evaluate f in superposition to get

|ψ2〉 =
1√
M

M−1∑
x=0

|x, f(x)〉

3. Measure f(x) to get some u. We get

|ψu〉 ∝
∑

x:f(x)=u

|x〉 =

M
r
−1∑

t=0

|x0 + tr〉

where x0 is the smallest solution to f(x0) = u.

4. Apply the Quantum Fourier Transform. If x0 happens to be 0, then we get a
superposition over multiples of M/r. But even if x0 isn’t 0, we know that this
constant shift just leads to a different phase. We won’t look at the phase and
instead just hide it with a φ variable. Ignoring the x0, we have precisely one

2

of the examples we worked out in the last lecture (see bottom of page 4 of the
lecture 22 notes). Throwing in the extra φ phase shift we get

QFT |ψu〉 ∝
r−1∑
s=0

φ|sM
r
〉

5. Measure to get a multiple of M/r.

6. Repeat this many times with a fixed f and M and then take the GCD of all
the multiples of M/r that this procedure produces. With high probability the
greatest common divisor will be M/r. From this we can recover r.

Once we have r, we just hope that it’s even and that ar/2 is in fact a non-trivial square
root of 1 (if not, repeat the steps above and try a different r).

What if we don’t know M? It turns out we can just guess an M ′ and as long as its
sufficiently large, the QFT gives you something close to the multiples of M/r. We
pick M ′ ≈ O(N2). There are some other tricks you need to play to make this work,
but we won’t cover this today.

So we know that quantum algorithms are fantastic at finding periods of functions.
Note that the quantum algorithm for finding discrete log didn’t care what group we
were in. Once someone builds a quantum computer they can essentially break discrete
log in any group.

1.3 Speeding up NP Problems with Grover’s Algorithm

Turns out for general NP problems, we can get a quadratic speed-up, but it won’t
always give us a polynomial time algorithm (assuming P 6= NP).

Consider a boolean function f : {0, 1}n → {0, 1} for which there exists exactly one x
such that f(x) = 1. The goal is to find x. We don’t know anything else about f , so
this is called unstructured search.

Classically, for general f , all we can do is iterate over all possible inputs. Think of f
as some oracle that we can query on various points. This takes O(2n) evaluations of
f .

Turns out with quantum we can do O(2n/2) which is a quadratic speedup over brute
force search.

1. First, we set up the superposition

|ψ〉 =
1√
2n

∑
x∈{0,1}n

|x〉

3

2. We repeatedly apply a “Grover Iteration”, which is a two step process.

(a) We apply the map that sends |x〉 to |x〉 if f(x) = 0 and −|x〉 if f(x) = 1.
How do we do this? We’ll assume we can access the function f(x) in a
way that allows us to XOR this function f(x) into the response register
|x, b〉 → |x, b⊕ f(x)〉.
First create the state by appending the polarization at 135 degrees to |ψ〉
(here |ψ〉 could either be the original |ψ〉 or the result of applying this
computation a few times) to get

|ψ〉(1√
2
|0〉 − 1

2
|1〉).

Then we apply f . If we pretend that |ψ〉 is just |x〉 for some x, then
applying f results in

|x〉(1√
2
|0〉 − 1√

2
|1〉)→ |x〉(1√

2
|f(x)〉 − 1√

2
|f(x)〉)

where f(x) denotes the complement bit (recall that the output is a single
bit).

If f(x) = 0, then we get |x〉(1√
2
|0〉 − 1√

2
|1〉).

If f(x) = 1, we get −|x〉(1√
2
|0〉 − 1√

2
|1〉)

So going back to |ψ〉, we have that if we apply f to |ψ〉 =
∑

x αx|x〉(
1√
2
|0〉−

1√
2
|1〉), we get ∑

x

αx(−1)f(x)|x〉(1√
2
|0〉 − 1√

2
|1〉).

We can just throw away the last bit, and we have exactly what we want.

(b) The second step works as follows. Suppose we start at an equal superposi-
tion of all states |x〉, each with amplitude 1√

2n
. The first step leaves all the

states untouched except for |x0〉 where x0 is the one accepting value for f .
The amplitude of |x0〉 gets flipped to − 1√

2n
. The second step operation is

merely a reflection about the average amplitude.

Note that when just |x0〉 has amplitude− 1√
2n

, the average amplitude is just

slightly smaller than 1√
2n

. Rotating about the average sends the amplitude

of |x0〉 to just below 3√
2n

, and sends all the other points to something still

slightly smaller than 1√
2n

.

More precisely, if we have a state
∑

x αx|x〉, and define µ to be the average
αx, then this map sends the state to

∑
x(2µ− αx)|x〉.

We’ll explore the implementation details of this in a moment. This trans-
formation is indeed unitary (clearly it’s reversible, and it also turns out to
be norm-preserving).

4

Intuition: We can think of step a in the Grover iteration as just flipping the sign of
the amplitude of |x0〉. Then step b reflects the amplitude of every state |x〉 about the
average amplitude. Every time a Grover iteration occurs, the absolute value of the
ampltiude of |x0〉 grows while the absolute values of the other amplitudes shrink very
slightly. We simply repeat the Grover iterations and then perform a measurement at
the end to learn |x0〉 with constant probability.

How many iterations do we need to do? After k iterations the amplitude on x0 ≈ O(k)√
2n

.

If we measure the state now, we get x0 with probability O(k
2

2n
). This is basically

where the quadratic speedup comes from. We need to set k ≈ O(
√

2n), and then this
probability becomes a constant. We need to work a little harder to prove the errors
don’t accumulate too fast.

Now we need to implement this “rotating about the average” step of the Grover
iteration.

We use QFT2, the Quantum Fourier Transformation in the q = 2 case where ω2 = −1,
and a new gate G. G sends |0〉 to |0〉, and |y〉 to −|y〉 for all other y 6= 0 (this is
unitary, but we won’t verify it).

First, we apply the QFT2, then G, then QFT2 once more. So step b simply maps

|ψ〉 → QFT2 ◦G ◦QFT2|ψ〉

It turns out that this exactly implements the reflection about the mean. Roughly
speaking, we can think of the G as performing the desired reflection but in a different
basis, and the QFT2 gates are required for the base change.

What if I have more than one accepting input? The problem is that these errors will
accumulate too fast, and by the time we’re at O(

√
2n) iterations, we won’t get the

right answer anymore.

But suppose there are r accepting inputs. The total weight squared on all accepting

inputs is approximately rk2√
2n

. Then if we set k = O(
√

2n

r
).

Let’s say I don’t know how many accepting inputs there are. We’re just going to try
all the powers of 2 for r.

1.4 Applications of Grover’s Algorithm

In cryptography we care about inverting one way functions. We set security parame-
ters like λ = 128 because we figure that classical computers can’t do 2128 operations,
even if we use the entire world’s resources. But since Grover’s algorithm brings us
down to 264, suddenly inverting one way functions is within the realm of possiblity.

So inverting one way functions goes from 2n to 2n/2 when we go from the classical

5

world to the quantum world. What about finding collisions in collision resistant hash
functions?

The birthday paradox says we can do this in 2n/2 time in the classical world. With
Quantum algorithms you can get 2n/3.

The algorithm that does this uses Grover as a subroutine. It chooses k = 2n/3 random
inputs x1, . . . , xk. We record zi = F (xi) for each of these i.

First we verify that there are no collisions in {xi} (if there is one we can stop here,
but there probably won’t be).

Then we define the function f(y) be 1 if y 6∈ {xi} and F (y) ∈ {z1, . . . , zk} and 0 else.
This function accepts any input that collides with one of the inputs in x1, . . . , xk.

Finally, we run Grover’s algorithm on f to find our collision. The question is how
many iterations do we need to do?

Assume we have a random f : {0, 1}n → {0, 1}n. The z′s form a 2n/3

2n
= 1

22n/3 of the
possible outputs. Each y maps into {zi} with probability 1

22n/3 . We have roughly 2n

y’s. So we have roughly 2n/3 accepting inputs.

Now we just apply Grover. So the number of iterations we need is
√

2n

2n/3 = 2n/3. It

turns out that setting k = 2n/3 gives us the optimal balance.

6

	More Quantum Algorithms
	Period Finding
	Shor's Algorithm for Factoring Integers
	Speeding up NP Problems with Grover's Algorithm
	Applications of Grover's Algorithm

