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Notes for Lecture 21

1 Experimental Examples

We will first discuss some experiments in order to start giving an idea of the physical
properties quantum computing allows us to harness.

1.1 Experiment 1

XXXXX | | | |

XXXXX --------------------------> (|) ------------------------> (>) X

XXXXX \ \

laser light beam poloroid filter (1/2 energy) no energy

Here we have a laser shooting out a light beam equally combining light with a 90
degree, |, and one hundred thirty-five degree,
, polarization. After the first polariod filter, the (|), which filters for light with the
90 degree polarization, only half the energy remains, all of it having a 90 degree
polarization. The second filter, (>), filters for light with a 0 degree polarization,
resulting in no energy remaining after this filter.

1.2 Experiment 2

XXXXX | | ^ | | / / > > >

XXXXX ------------> (|) ----------(/)----------> (>) --------------->

XXXXX \ \ P_0 P_1 P_2

laser still some left (1/8)

Here we add in a polaroid filter (called P1) in-between the filters from the previous
experiment. Counter-intuitively, adding in this additional filter results in some energy,
one-eighth of the original amount, being left after the final filter.
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2 Explanations

We will now look at different ways to explain this phenomenon.

2.1 Classical Explanation

This can be described classically, with an electric field is a vector and the polaroid
filters being projection.

This idea doesn’t quite make sense with quantum mechanics, because light is made
of photons, and you can’t get half a photon.

2.2 Quantum Explanation

We will represent different polarizations with specific notations. We will use |↑〉 to
indicate a vertical polarization. We will use |→〉 to indicate a horizontal polarization.
|↗〉 will be for a 45 degree polarization and |↘〉 for 135 degrees.

We will generalize this by representing them in the form α |↑〉+ β |→〉, with normal-
ization. For instance, |↗〉 = 1√

2
|↑〉 + 1√

2
|→〉. In general, for an angle θ we have

|ψ〉 = eiγ cos(θ) |↑〉+ sin(θ) |→〉.
Now, for the diagrams above, a photon will be emitted with a random θ. When it
hits P0, with probability cos2(θ), the photon passes through and becomes |↑〉. With
sin2(θ) it will be absorbed. If there is not P1, should a photon make it past P0 it will
be absorbed by P2.

In general we will have that for a photon |θ〉 = eiγ cos(θ) |↑〉+sin(θ) |→〉 and a filter P
polarized with |θ′〉 = cos(θ′) |↑〉+sin(θ′) |→〉 with probability cos2 (θ − θ′) the photon
passes through and becomes |θ′〉 and with probability sin2 (θ − θ′) it will be absorbed.
This formula can be used to analyze the diagram with P0, P1, P2 and it will return
the correct probabilities.

2.2.1 Notation

|↑〉 , |→〉 , or the more general |ψ〉 represent column vectors. In general we will have

things of the form

(
eiγcosθ
sinθ

)
.

〈ψ| will represent the row vector, which has the general form
(
e−iγcosθ sinθ

)
. This

is basically the conjugate transpose of a column vector.

We also have 〈ψ| ψ′〉 which is the inner project. Our normalizing condition is equiv-
alent to 〈ψ| ψ′〉 = 1.
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We can now rewrite the general polarization rule from before. If polarization is |ψ′〉,
photon is |ψ〉, the photon will pass with probability | 〈ψ′| ψ〉 |2, and becomes |ψ′〉.
The remainder of the time it is absorbed.

2.3 Realizations

There are different ways to realize this idea of a |ψ〉 state that we have been describing,
just like their are different ways to physically realize a bit, We call what is being
realized by a photon here a qubit. We associate |↑〉 with 0 and |→〉 with 1.

3 Measurements

Our polarization filters allow us to detect polarization to some extent, We can imple-
ment a mechanism using this for measurement. Let |b0〉 , |b1〉 be an orthogonal basis

for a 2d complex space. For example

(
0
1

)
and

(
1
0

)
.

Given a state |ψ〉 we can measure in our basis B, and with probability | 〈b0| ψ〉 |2, we
measure 0 and |ψ〉 becomes |b0〉. With probability | 〈b1| ψ〉 |2, we measure 1 and |ψ〉
becomes |b1〉.

4 Operations

In addition to measurements, we can look at the operations we can do on qubits. It
turns out that rotations and adding phases, and combinations of these, are the only
operations we can do.

We can generalize these operations as linear norm preserving transformations, or
equivalently, applying a unitary matrix.

Suppose that an operation takes |ψ〉 and goes to U |ψ〉 for some matrix U . The
condition that it’s norm preserving means that 〈ψ| ψ〉 = 1 before we even do anything,
so when we take the conjugate transpose we get 〈ψ|U t and multiply by U |ψ〉 we get
that 〈ψ|U tU |ψ〉 = 1 in order to preserve the norm we want. Since this must hold for
any ψ we get that U tU must be the identity matrix. It turns out the only operations
that have these forms are rotations, add phases, and combinations of these.
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5 Comparison

We can compare the types of operations we can do with qubits and those we can do
with normal probabilistic bits.

5.1 Quantum

1. The state is a vector over the complex numbers.

2. Transforms are unitary matrices where the columns are orthonormal.

3. Uses the L2 norm.

5.2 Classical

1. A probabilistic process outputs a bit

(
a
b

)
where a is the probability of a 0, and

b is the probability of a 1.

2. For some transform where 0 goes to 0 with prob p, and 1 with prob 1 − p,

and 1 goes to 0 with prob q and 1 with prob 1 − q, we have,

(
a
b

)
goes to(

p q
1− p 1− q

)(
a
b

)
. This sort of matrix is called a stochastic matrix. The key

features are that the columns sum to 1 and all the entries are non-negative.

3. Uses the L1 norm.

6 Quantum Key Distribution (QKD)

Using quantum computing, we can do two party key agreement, such that a passive
adversary cannot discover the key.

Using Diffie-Hellman, or any pk encryption scheme works. classical solutions to this
require computation assumptions. With quantum we can achieve unconditional se-
curity against unbounded adversaries.
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6.1 Procedure

6.1.1 Alice

Choose random bi, ci bits for i from 1 to λ. she is going to make ψi = |↑〉 if bi = 0
and bi = 0. |→〉 if bi = 0 and bi = 0. |↗〉 if bi = 1 and bi = 1. And |↘〉 if bi = 1 and
bi = 1. she sends the ψi qubits to bob.

6.1.2 Bob

receives the ψi for each i qubits from Alice. he is going to choose random b′i , he is
going he will measure |ψi〉 in basis corresponding to b′i to get c′i note, if bi = b′i, we
have c′i = ci

He will then tell Alice all the b′i values

6.1.3 Alice

Alice will tell bob her bi values

6.1.4 Alice and Bob

For all the bi = b′i points, they will have ci = c′i on these points. These c values will
be there shared bits.

6.2 Eve Attacking

Suppose Eve tries to measure |ψi〉, she can measure herself, doing what bob does, to
learn half the c bits. If Eve’s basis is wrong for any |ψi〉, then the result will be that
the |ψi〉 will be modified by the measurement. This will result in that ci value being
different for Alice and Bob

6.3 Procedure Continued

6.3.1 Bob

Choose a random subset S of indices where bi = b′i, also send the c′i values at each of
those indices to Alice.
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6.3.2 Alice

Alice will send her own ci values at each of those indices.

6.3.3 Alice and Bob

if any of those c i and c′i values are different, they abort because it means they were
being observed, otherwise the remaining ci values where bi = b′i will be the key.

6.4 Issues

1. We are making the assumption that we already have a classical authenticated
channel.

2. Eve can run a denial of service attack as the eavesdropper by just always mea-
suring what we say.

6.5 Addendum

Considering an Eve that takes |ψi〉 and clones it, keeping one copy and sending the
other onto Bob. This would let her replicate what Bob did and she will be able to
get the keys. This is not possible because of the quantum no-cloning theorem.
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