
COS 533: Advanced Cryptography Princeton University
Lecture 20 (November 29, 2017)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 20

1 Using LLL to Find Roots Mod N

Last time we looked at the LLL algorithm. Given an arbitrary basis for the lattice,
it finds a somewhat short basis for the lattice, and in particular it finds a somewhat
short vector in the lattice. Today we’ll see how to use the LLL algorithm to find
solutions to problems that, on the surface, seem to have nothing to do with lattices.

1.1 Motivation

Consider the following problem. Let f be a degree d polynomial, and let N be an
integer of unknown factorization (think of this as a product of two large primes).
Find solutions to f(x) ≡ 0 mod N .

In general, this is as hard as factoring N . You can take f(x) = x2 − a, and solutions
are square roots of a mod N . It’s known that the ability to take square roots gives
you the ability to factor N . So this is believed to be a hard problem.

But in some cases, you can find small roots in polynomial time.

Example is the RSA cryptosystem. The RSA problem is: given xe mod N along
with e,N , find x (where e is chosen so that this xe is one to one). Often we’ll have
e = 3 in practice.

So given f(x) = xe mod N , finding x is assumed to be hard. But assume we have a
guess x̃ for x, where |x̃− x| is small. Then consider the function f(z) = (x̃+ z)e − y
where y = xe. Note that a valid solution is z = x − x̃, since then you get f(z) = 0.
This means that if we are given a good guess x̃ for x, we can find x exactly as long
as we can find a small solutions for z. This is precisely what the following theorem
gives us.

1.2 Main Theorem

Theorem. Let N be an integer with unknown divisor N ′ ≥ Nβ where 0 ≤ β ≤ 1.
Let f(x) be a monic degree d polynomial. Let c ≥ 1. Then we can find all solutions
x0 to f(x0) ≡ 0 mod N ′ such that |x0| ≤ cNβ2/d in time poly(c, d, logN).

1

As a special case, let β = 1. This implies N ′ = N . Then the theorem says we can
find all solutions to f(x0) ≡ 0 mod N such that |x0| ≤ N

1
d

In our RSA example, this theorem says we can find a root z as long as |x̃− x| ≤ N
1
e .

Another application is that we can factor N = pq given an approximation p̃ for p
where |p̃ − p| is small. Also assume that p ≈ q ≈

√
N . We can prove this with the

main theorem, but not the special case.

We let f(x) = p̃ + x. The goal is to find a short solution to f(x) ≡ 0 mod p. If we

set β = 1/2 and N ′ = p. We can find x0 = p− p̃ as long as |x0| ≤ N
1
4 .

This gives an algorithm for factoring N in time N
1
4poly(logN) by just trying different

guesses for p̃.

This theorem can sort of be extended to multivariate polynomials, although the mul-
tivariate version of this algorithm is just a heuristic.

A further application of this theorem is to rule out RSA with a small decryption
exponent d. Normally in RSA we have pk = e and sk = d and ed mod φ(N) ≡ 1.
Decryption computes cd mod N . Note that the running time of decryption grows
with log d (via repeated squaring). This theorem tells us that we can factor N if d is
too small. Alternatively if N = prq, we can factor N if r is too big.

1.3 Main Theorem Proof

Now we prove the main theorem.

Proof Ideas. What if the coefficients of f are all small? Then f(x0) ≡ 0 mod N for
a small root x0 actually implies f(x0) = 0 over Z (as long as |f(x0)| < N). If it holds
over the integers, then we can find the roots using standard numerical methods. But
for all the examples we’re looking at, f does not have small coefficients.

So the goal is to find g such that g(x0) ≡ 0 mod N for all roots x0 of f , and g has
small coefficients (g may have more roots, but that doesn’t matter since we can just
test which ones are roots of f).

Let n ≥ d be some integer that’s at least the degree of f . The set of polynomials
with integer coefficients of degree at most n form a lattice. This lattice isn’t that
interesting, but now consider Lx0 , the lattice of polynomials with root x0 mod N ′.
This is a lattice since adding two such polynomials still gives another polynomial
with this property. Unfortunately, we don’t know how to compute this lattice since
we don’t know what x0 is. Instead, we’ll construct a lattice L ⊆ Lx0 that is contained
in Lx0 . Then we’ll use LLL to find a short vector in L, which will be our g.

Proof. How do I construct this lattice L? L will be the span of some polynomials in
Lx0 . One such polynomial is f , but we can also look at xf(x), x2(f)x, f 2(x), f 3(x), N,Nx,Nx2, etc.

2

We choose some integer m and some integer t. We’ll come back to figuring out what
this m is later. We’ll consider the polynomials

gij(x) = N ixjfm−i(x),

where i ∈ [1,m] and j ∈ [0, d− 1], and the polynomials

hi(x) = xifm(x),

where i ∈ [0, t− 1].

We’re not going to apply LLL directly to these polynomials. Instead we’ll apply LLL
to gi,j(xB), hi(xB) for some bound B on |x0|. So we’ll think of these polynomials as
functions of xB. This scales up the higher order coefficients by powers of B. Also
we’ll show that the dimension of the space these polynomials span is n = md+ t (this
is immediate once we show these polynomials are linearly independent).

First we use (but won’t prove) a lemma that states LLL produces a vector of length

at most 2
n−1
4 det(L)

1
n . To compute this determinant we can take the determinant of

any basis of the lattice.

Computing the determinant of this lattice isn’t too hard, if we observe that the
polynomials can be arranged into a lower triangular matrix (where the determinant
is just the product of the all the diagonal entries). To see this, look at the degree of
gi,j. f has degree d, so it has degree j+d(m− i). For each choice of i and j, this gives
me something distinct (think of looking at the degree of g as a two digit number in
base j, where the least significant bit tells me j and the most significant bit is enough
information to uniquely figure out i). The degree of hi is dm+ i. For all the allowed
choices of i and j, these degrees hit every integer from 1 to n = md + t and don’t
overlap. So we have linearly independence, but more importantly we can just get the
determinant by multiplying the leading terms of these polynomials.

This is a straightforward computation, since f is a monic polynomial. Note that that
we’re looking at the inputs scaled up by B. Collecting all the terms gives

det(L) =
∏
i,j

N iBd(m−i)+jBdm+i = N
1
2
dm(m+1)B

1
2
m(n−1)

The point of multiplying by B is that the bound we calculate actually bounds what
you would get if you plugged in an x that is at most B.

So LLL outputs g such that |g(xB)| ≤ 2
n−1
4 N

md(m+1)
2n B

(n−1)
2 .

Note that elements in this lattice are not just 0 mod N ′, but actually 0 mod (N ′)m.

Now we state one more lemma (this time with proof) that allows us to claim that the
LLL algorithm outputs a polynomial g that is small enough that we can solve it over
the integers.

3

Lemma. Let g(x) be a polynomial of degree n. Let m ≥ 0, B ≥ 0. Suppose that
x0 ≤ B and that the following two conditions hold:

1) g(x0) ≡ 0 mod (N ′)m

2) |g(xB)| < (N ′)m√
n

Then we have that g(x0) = 0 over Z.

The proof of this lemma is straightforward. We write |g(x0)| = |
∑

i cix
i
0| ≤

∑
i |cixi0|

where we’ve applied the triangle inequality to bring the absolute value into the sum.

Then using our bound on x0, we conclude |g(x0)| ≤
∑

i |ci|Bi. Relating an `1 norm
to an `2 norm incurs a

√
n factor, we have

∑
i |ci|Bi ≤

√
n|g(xB)| < (N ′)m (last

inequality is from condition 2). So we conclude that g(x0) = 0 over the integers (end
of lemma proof).

If we want to apply this lemma, we match up what we know with what the lemma
requires for its second condition. So we need that

2
n−1
4 N

md(m+1)
2n B

(n−1)
2 ≤ Nβm

√
n

What you get is B ≤ N
β2

d
−ε for any ε ∈ (0, β/6] in time poly(1

ε
, d, logN). So far

this shows that we can get arbitrarily close to our theorem statement, but we don’t
get the exact theorem statement. What we can do is set ε = 1

logN
, which makes the

running time N
−1

logNN
β2

d = Nβ2/d. Basically we repeat this algorithm c times (for c
different guesses) and we get the running time cNβ2/d.

So in summary, the algorithm first constructs a lattice that’s a sublattice of the lattice
Lx0 we care about. We apply LLL to get a short vector in the lattice, and then use
a lemma to conclude this short vector actually corresponds to a polynomial we can
solve over the integers.

4

	Using LLL to Find Roots Mod N
	Motivation
	Main Theorem
	Main Theorem Proof

