
COS 533: Advanced Cryptography Princeton University
Lecture 19 (November 27, 2017)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 19

1 Worst Case to Average Case Reduction

Why should we believe particular instances of problems are hard? For some lattices,
the shortest vector problem is not hard. For building crypto, we want a justification
for why particular instances of problems are hard.

Theorem: Suppose we have an oracle that solves the short integer solution problem
(on average) (which we denote as SISn,m,q,β). Then we can solve a modification of
the SIV Pγ problem (in the worst case) if q = O(n2), B = O(

√
m),m = Ω(n log q).

What this says is that SIS is the right distribution to consider. If I believe that
SIVP is hard in the worst-case, then I can’t produce an SIS oracle without getting a
contradiction.

1.1 Definitions

Successive minima of lattices. λ1(L) is the length of the shortest vector in L \ {0}.
We define

λi(L) = min
`
{` : L contains i linearly independent vectors of length ≤ `}

The shortest vector problem is

SV Pγ : find vector v of length ≤ λi(L)

The shortest independent vectors problem is

SIV Pγ : find basis B = {b1, . . . , bn} such that |b|i ≤ γλn(L)∀i

You can relate these two problems but they’re somewhat incomparable.

The shortest integer solution problem SISn,m,q,β is: given A← Zn×mq randomly sam-
pled, find x ∈ Zm such that A · x = 0 mod q and |x| ≤ β.

1

1.2 Reduction

Proof of theorem. Our algorithm works as follows. Given B for lattice L, choose
x1, . . . , xm ∈ Zn according to discrete Gaussian of width σ. Let yi = xi mod L(B).
Essentially, yi is the result of subtracting out a lattice point from xi so that we end
up in the fundamental parallelpiped. It’s not hard to figure out that yi = B(B−1xi
mod 1), since B−1x mod 1 drops the integer component, and then multiplying by B
gets us inside the parallelpiped. It’s easy to check that when yi = B(B−1xi mod 1),
the difference between yi and xi is a lattice point.

We claim that the yi’s are basically uniformly distributed in the fundamental paral-
lelpiped. This is intuitively clear if we pick the Discrete Gaussian to have high enough
width (with respect to the size of the parallelpiped). We won’t prove this, but we
have a lemma that formalizes this. If σ ≥ λn(L)

√
log n+ log(1/ε), then yi is ε close

(distributions are ε close) to random.

Note that the fundamental parallelpiped has the same volume regardless of the choice
of basis vectors. So even though the above lemma doesn’t depend on the length of
the basis vectors, it’s still correct since there is a one to one correspondence between
points in any fundamental parallelpiped.

Now consider the bigger lattice 1
q
L(B). We’re going to let ai = d(1

q
B)−1yc, which is

the rounding of y so that it is uniform in Znq . Then we compute zi = (1
q
B)ai which is

uniform among the lattice points in 1
q
L(B) within the parallelpiped of L(B). Then

we let A = (a1, . . . , am), and we give this to the SIS oracle to get e = e1, . . . , en.

We know that since e is a SIS solution, we have
∑

i eiai = 0 mod q and that |e| ≤ β.
We’ll turn this into a short vector.

For now, we say that we output U =
∑

i ei(xi− yi + zi). This won’t be entirely right,
but we’ll show how to fix it.

First, note that U ∈ L(B). To see this, we notice that
∑

i ei(xi − yi) ∈ L(B). This
is because we chose yi so the xi − yi differences would be in the lattice, and then we
take integer combinations.

Now we just need to show that
∑

i eizi ∈ L(B). We have
∑

i eiai = 0 mod q, and
if we scale down ai by q, we have

∑
i ei(ai/q) = 0 mod 1. So we conclude that∑

i ei(
1
q
Bai) = 0 mod B from multiplying both sides by the basis B. This means

that I can subtract a lattice point from
∑

i eizi to get to the origin, meaning that∑
i eizi itself is a lattice point.

Next claim is that U is short. We have

|U | ≤ |
∑
i

eixi|+ |
∑
i

pi(zi − yi)|

2

This quantity is approximately

≈ βσ
√
n+ βnmax |bi|/q.

The first term is from the Cauchy-Schwarz inequality, and the second term comes
from the fact that zi is a point in the larger lattice, and yi is just a random point, so
the distance is at most the length of a basis vector divided by q.

If we set q to be around n2, we want to claim that this is actually a short vector.
But note that max |bi| could be exponentially big, so we don’t immediately have our
result. Instead, we’ll use an iterative approach based on the fact that if I choose q
to be bigger than βn, then βnmax |bi|

q
is already smaller than the largest vector in the

basis. We can pick it so that it’s smaller than 1/2 times the largest vector in the basis,
and then swap out the largest vector in the basis for U . Repeating this a polynomial
number of times eventually gives a small enough basis, and then we get a short U .

More precisely, we get max |bi| ≤ O(nλn), which solves SIV Pγ. And also |U | =
O(Bn

√
m) gives us an SV Pγ solution.

Two issues we may have are 1) U may be in the subspace of all the shorter vectors
(i.e. swapping in U for the longest basis vector no longer gives a basis), and 2) U
may itself be 0.

It turns out that the randomness in the xi’s will solve both of these issues with the
analysis. Note U is composed of ei, xi, yi, zi terms, but that even with the ei, yi, zi
terms fixed, the difference xi − yi can vary as a discrete Gaussian. This randomness
is enough to give us U vectors that do not have these problems.

2 Cryptanalysis

It turns out that lattices are useful for solving presumably hard problems. We consider
the problem of computing a short basis for a lattice given a basis for the lattice.

This is the Lenstra-Lenstra-Lovasz (LLL) Algorithm.

As an illustrating example, imagine two basis vectors that are very close to each other
and form a very skinny parallelpiped. We can try subtracting the two vectors. But
maybe b2 − 2b1 is a better short vector than b2 − b1. Roughly what we try to do is
find the optimal integer k such that b2 − kb1 is as short as possible. To do this, we’ll
use Gram-Schmidt.

Recall that in Gram-Schimdt, given a basis B = (b1, . . . , bn), we compute a bunch of
orthonormal vectors that span the same space (actually we’ll just care about orthogo-

nality and not orthonormality). So b̃1 = b1. Then b̃2 = b2−µ2,1b̃1 where µ2,1 = 〈b2,b̃1〉
〈b̃2,b̃1〉

.

Then we get b̃3 = b3 − µ3,1b̃1 − µ3,2b̃2.

3

However, we can’t just do Gram-Schmidt, since we’re dividing by stuff and therefore
my orthogonal basis will be rational (not lattice vectors). So we’ll just do rounding
instead of subtracting off exactly µ2,1. So the algorithm is b′1 = b1 and b′2 = b2 −
dµ2,1cb′1. But what if b1 was already quite large? Then at the end of this procedure
we still have at least one large vector in the lattice. The fix is that if |b′2| ≤ |b′1|, we
swap and repeat. This is basically the Extended Euclidean Algorithm but applied to
integer vectors. At some point this iterative process will end.

The result is that I get some b′1, b
′
2 such that |b′1| ≤ |b′2| and |µ2,1| ≤ 1

2
.

The LLL algorithm essentially generalizes this to make sure that it runs in polynomial
time. We define a σ−LLL reduced basis, where δ ∈ (1

4
, 1). This basis is reduced if

|µi,j| ≤ 1
2
∀i > j (if this isn’t the case, we can do more steps). Then |b̃i+1| ≥

(δ − µ2
i+1,i)|b̃i|2. This last expression is a generalization of |b′2| ≥ |b′1|. To see this,

not that the expression when δ = 1 is |b̃2|2 ≥ (1− µ2
2,1)|b̃1|2. Note that |b̃2|2 = 〈b′2 −

µ2,1b
′
1, b
′
2−µ2,1b

′
1〉 = 〈b′2, b′2〉−2µ2,1〈b′1, b′2〉+µ2

2,1〈b′1, b′1〉 = |b′1|2−µ2
2,1|b′1|2 = (1−µ2

2,1)|b′1|2.
Note that the tilde variables are the Gram Schmidt orthogonalization of the primed
elements.

The intuition of the LLL algorithm is that you take your basis, check if it is LLL
reduced. If it’s not, there’s a violation, you can do the Extended Euclidean Algorithm
step until the violation.

Theorem: If B is δ−LLL reduced, then b1 ≤ (2√
µδ−1)n−1λ1(L). This gives a 2O(n)

approximate shortest vector.

This solves the gap SVP problem for 2O(n) approximation ratios. Next time we’ll see
how to use this algorithm to solve other problems.

4

	Worst Case to Average Case Reduction
	Definitions
	Reduction

	Cryptanalysis

