
COS 533: Advanced Cryptography Princeton University
Lecture 18 (November 20, 2017)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 18

1 Gentry’s Fully Homomorphic Encryption Scheme

A fully homomorphic encryption scheme is a scheme that allows you to perform
computations on ciphertexts without having a secret key. Last time we sketched an
approach with approximate eigenvectors and eigenvalues.

1.1 Construction

Last time, we covered something called a gadget matrix. This is a fancy word for bit
decomposition. The matrix looked like1 2 4 8 · · ·

1 2 4 8 · · ·
1 2


We called this matrix G. This has m rows and n log q columns. We also have a
matrix G−1 that takes vectors V ∈ Zn

q , and the product is u ∈ {0, 1}n log q. It has
the property that G · G−1(V ) = V . G−1 takes things and writes them down as bits.
Basically we think of G as reassembling the vector using the powers of 2.

We can also think of this as applying to matrices. We have G ·G−1(A ∈ Zm×m
q ) = A.

The scheme works as follows.

• Gen(). The secret key is sk = s =

(
s′

−1

)
where s′ ← Zn−1

q is randomly

sampled. We have a public key pk = P =

(
P ′

s′TP ′ + eT

)
where P ′ ← Z(n−1)×m

is randomly sampled. So first I generate a random matrix P ′, which gives me
the first n−1 rows of my public key. The final row is given by multiplying s′TP ′

and then adding some noise eT . Basically we are constructing an LWE sample
in the bottom row.

• Enc(pk, x). For now we think of x ∈ Zq. Later we’ll change it to be in binary.
The ciphertext is of the form PR + xG where G is the gadget matrix and
R← {0, 1}m×m.

1



• Dec(sk, C). I take my secret key s and left multiply by C. Note that the
dimensions of sTC match up. We get sTC = sTPR + xsTG (note that x
is a scalar so it commutes with everything). Notice that sTP is small, since
sTP = s′TP ′T − (s′TP ′ + eT ) = eT , and eT was chosen to be a small error
term. Note that sTG looks like

(
sT 2sT 4sT · · ·

)
. Since this is a big vector

(components are large relative to q), I can look at one coordinate of the vector
and recover the scalar x.

Why do we need these powers of 2? They’ll be necessary for the homomorphic
operations.

1.2 Homomorphic Operations

• Addition. Given two ciphertexts C0 encrypting x0 and C1 encrypting x1. Adding
these ciphertexts and decrypting gives sT (C0 +C1) = sTC0 + sTC1 = sTP (R0 +
R1)+(x0+x1)s

TG. We need to be careful here, since we said we were restricting
x to be binary, and now it may be up to 2 (for example). The small terms are
still small, but less small than before.

• Multiplication. Remember last time when we talked about approximate eigen-
vectors, we said that when you multiply two ciphertexts together as matrices,
you get the a matrix whose eigenvalues are the product of the eigenvalues of
the original matrices. But here we can’t do that, as the dimensions don’t even
match up. But we can compute C0 · G−1(C1). Remember that the bit decom-
position works column by column, so it transforms C1 into a binary matrix of
the correct dimensions. Now I try to decrypt as

sTC0 ·G−1(C1) = (sTPR0 + x0s
TG) ·G−1(C1)

= sTPR0G
−1(C1) + x0s

TC1

= sTPR0G
−1(C1) + x0s

TPR1 + x0x1s
TG

The observation here is that if we group the first two terms together, it looks
like an error term, and the last term is the part of the ciphertext encrypting
x0x1. All we have to verify is that sTP (R0G

−1(C1) + x0R1). We know that
sTP is small. We know that R0 is small since it was picked that way. G−1(C1)
is a binary matrix, so it’s small (this is where the binary decomposition helps
us). And x0R1 is small as long as the plaintext x0 is small. So if we keep the
plaintexts binary, this will be small and we will decrypt correctly.

Security is actually pretty straightforward from the Learning With Errors (LWE)
assumption. Note that the LWE step appears when we look at the bottom row of
P , which is s′TP ′ + eT . LWE tells us that I can change P to be a random matrix,

2



since from the adversary’s perspective an honest public key generated in this fashion is
indistinguishable from a random matrix. But when P is totally random, the plaintext
is completely hidden. If we have truly random P , then the ciphertext has an additive
PR for a random R ∈ {0, 1}m×m, which is indistinguishable from a random matrix
T . R basically takes a random subset sum of columns of P to get each column of T .
For a random matrix P , assuming its wide enough, taking a random subset sum will
give a uniformly random column (and thus we get a matrix very close to a uniformly
random matrix). So the ciphertexts look like T + xG, and the random T makes this
ciphertext look like a random matrix.

1.3 Number of Operations

How many operations can this scheme handle? We need to keep plaintexts in {0, 1},
so we’ll have to modify the addition operation (multiplication is still okay). Note
that for x0, x1 ∈ {0, 1}, we can write x0 + x1 mod 2 = x0 + x1 − 2x0x1. So addition
becomes C0 + C1 − 2C0G

−1(C1).

Let’s see how the noise accumulates. When we multiply, the R vector goes from being
binary to being order m. After another multiplication we get to order m2. So when we
try to evaluate a depth d circuit homomorphically, the R matrix is on approximately
on the order of md. The addition of x0R1 contributes some noise, but the dominating
factor is the R0G

−1(C1) term. We need md ≤ q for depth d computations.

Recall the motivating factor of fully homomorphic encryption, where I want to out-
source computations to the cloud. Suppose I know the depth of my computation. I
just set up the scheme with q sufficiently large. Note that exponential q is large, since
the operations are logarithmic in q (we just don’t want to have q be doubly exponen-
tial). So I need to have an a priori polynomial depth bound, and if the computations
end up going beyond that, the noise will be too high.

1.4 Bootstrapping

This is a neat idea that allows us to take an FHE scheme that can handle some
number of operations and turn it into one that can handle an arbitrary number of
operations.

We are given a ciphertext C encrypting some message x. Let’s suppose the noise is at
the point where we can’t perform more operations. We want some way to “refresh”
C to get low noise.

Let’s suppose we’re in the setting the client is outsourcing their computation to the
cloud. An easy interactive solution would be to send C back to the client and ask
the client to decrypt and re-encrypt. The better idea would be to have the cloud

3



perform this procedure via the homomorphic operations (and avoid interacting with
the client).

We include in the public key an encryption of the secret key. So we give Csk =
Enc(pk, sk).

Given C that I’m trying to refresh, I construct a circuit DC with C hard-coded where
DC(sk) = Dec(sk, C). Now we homomorphically evaluate DC on Csk. Under the
hood, I’m evaluating DC on the plaintext hidden in Csk, which is sk. So the result is
Enc(pk,DC(sk)) = Enc(pk, x) where x is the plaintext encoded by C.

As long as the scheme can handle operations as complicated as the decryption pro-
cedure, this idea will work. To verify this, observe that decryption is just computing
an inner product between a vector and a matrix. But we only cared about one com-
ponent of the resulting vector, so really it’s an inner product between two vectors.
Then there’s a rounding step.

For an inner product, the depth of the computation is small. An inner product is
a pointwise multiplication of two vectors. The pointwise multiplication takes one
layer, and addition can be done in logm layers by setting up a binary tree structure
for the additions. If I want to handle vectors in Zq, I have to replace the binary
additions and multiplications with polyloglog(q) depth circuits. So the depth will be
(logm)(polyloglogq). Rounding takes polylogq depth. So overall the binary depth is
(logm)(polylogq). So we need md ≤ q. We compute

md = m(logm)(polyloglogq)

= 2log2 mpolyloglogq

= (log q)log
2mpolylogq ≤ q

1.5 Security

Remember that in regular CPA security experiment, there’s no way to obtain an
encryption of the secret key, since that would rely on the adversary actually querying
on the secret key.

What we need is circular security, which guarantees security even if you’re given an
encryption of sk. We know that there exist schemes with circular security based on
LWE. We can also construct schemes without circular security under LWE. So we
can’t make schemes like “all schemes based on LWE are circularly secure”.

What we want is an FHE scheme with circular security based on LWE, but this is
still open. So if you want FHE that can handle arbitrarily many computations, we
have to make an assumption of circular security.

4


	Gentry's Fully Homomorphic Encryption Scheme
	Construction
	Homomorphic Operations
	Number of Operations
	Bootstrapping
	Security


