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Notes for Lecture 16

1 Lattices (continued)

1.1 Last time.

We defined lattices as a set of integer linear combinations of a basis.

Definition 1 B is a basis for the lattice £ if the columns of B are linearly indepen-
dent and
L={B-x|lzeZ"}.

We say that £ := £(B) is the lattice spanned by B.
We discussed the following two computational problems.

(SVP) Shortest Vector Problem. Given a basis B € Z™*", find the shortest
(nontrivial) vector in £(B)\{0}.

(CVP) Closest Vector Problem. Given a basis B € Z"*", and a target vector
t € 7", where t is not necessarily in £(B), find the closest point to ¢ in £(B).

We also defined gap versions of the above problems. We will continue by analyzing
some special classes of lattices, discussing the Learning with Errors assumption and
looking at some applications.

1.2 Some special classes of lattices

From now on, we will only consider lattices in Z™. This is useful, because finite
precision will not be an issue. Moreover, any basis B € Z"*™ defines a lattice, even
it its columns are not linearly independent, which is not the case in R™.

Let ¢ > 2 be an integer, and let m,n € Z, with m > n. Let A € Z;*™ be a wide
matrix. We will consider two special classes of lattices.



1.21 Ay(A)={zeZ™| Az =0 (mod ¢) }

This is indeed a lattice, since adding any two vectors in the set yields another element
in the set.

The null space of A is an (m — n) dimensional object. Let C' € Z™*(™~™ be such
that AC = 0 (mod ¢). Since Ay (A) is m-dimensional, C' alone will not suffice as a
spanning basis. We fix this by adding vectors, to get
A7 (A) = £(C | qlwm),

q

where [ is the identity matrix.

1.2.2 T (A)={ze€Z"|3r: z=A"r (mod q) }

We can easily check that this a lattice. If xy,29 € I',(A), then there exist 7,79
such that z; = ATr; (mod ¢) and 2o = ATry (mod q). Then z1 + zo = Al(r; + 13)
(mod q), hence z1 + x5 € I';(A). Then as before, we get

Iy (4) = £(Alql)

q

We will analyze hard problems on the first lattice.

1.3 Some hard lattice problems

(SIS) Short Integer Solution Problem

Let g, m, 8 be functions of n, where n will play the role of our security parameter.
The problem is as follows.

(SIS) Given A & ZM™, find x € Z™ such that:

(@) ||z < 8 (i) Az =0 (mod q)!

Fun Fact. With high probability over the choice of A, if m is large enough over n
(m > Q(nlogq) suffices), there exists an x € I (4) N {0,1}™.

We will not prove this fact, which states that the short vectors are 0,1 vectors with
high probability. This implies that, for v = \/L%, we have

SISymy~ SVP,.

'That is, z € Ay (A)



Assumption. SIS,,, 3 is hard, i.e. every probabilistic polyonimial time algorithm
only has a negligible probability of giving a SIS solution.

This assumption allows us to construct hash functions.
Let A € Zy*™, and define f4 : {0, 1} — Z as fa(z) = Az (mod q), Vo € {0, 1}™.
If SIS is hard, f4 is collision resistant.

The idea is to turn a collision into a STS solution. Assume we can find z,y € {0,1}™
such that Arx = Ay (mod ¢), then A(z —y) = 0 with (x —y) € {—1,0, 1}"" short.

Based on a previous homework, if m is sufficiently large the function is compressing,
so in addition to being collision resistant, it is also a one-way function. Moreover, f4
is fast to compute.

1.3.1 (LWE) Learning with errors
Discrete Gaussian

We want to get a probability distribution over Z, which is proportional to the prob-
ability distribution of the continuous Gaussian. We start with

D;,c(x) = PT’[.T A Da,c] = 6—7r|z—c|2/027

which is slightly different from the usual definition of a Gaussian 2, but this will
simplify some of the calculations. To actually get a probability distribution, we need
to normalize:

677r|:1370|2/cr2

- —m|z—c|? /o2
>, e

Note. We will take for granted that this distribution can be sampled efficiently.

Dy ()

Learning with Errors Problem

Let A € Z;*™ be a wide matrix, i.e. m > n. Given sTA, it is easy to find s using
linear algebra. However, adding a noise makes finding s had.

LWE,n,: Given random A & Zp<m, let U = s"A 4 e’ (mod q), where s & Zy,
e d D7Y.

We can define two versions of the problem.

Search. Find s.

o, . . — — 2 2
2The usual definition is e~ 1#—¢l"/29



Decisional. Distinguish (A, U) from (A, u), where u & Ly
We make the computational assumption that these problems are hard.

Note. Solving LWE is similar to solving SVP for AqL(A). The idea is that if we can
recover s from s? A+ e, this corresponds to finding a closest vector to U in the lattice.

1.4 Public Key Encryption using LWE [Regev ’05]

We describe a public key encryption protocol using the Learning With Errors as-
sumption, first introduced by Regev.

Gen():
Randomly choose A, s, e: AL Zy=™, s & Ly, e & D7 3
Set the secret and public key: sk = (A,s), pk = (A,sTA+e)

Enc(pk = (A, u), m):
Let m € {0,1} (encrypt bit by bit). Choose z & {0,1}", encrypt as
(Az (mod q),uz + [£|m (mod q)).

Dec(sk = (A, s), (v, 2)):
Compute z — sy (mod ¢q) to get

z—sy (modq)=(s"A+e)x+ EJm —sTAz  (mod q)
=ex + %Jm (mod q)

e is chosen by Discrete Gaussian of width o - entries are roughly of order o. Then
lez]]> < /mon®® (mod ¢) with high probability. If m = 0, [£|m is short, and if
m =1, then ex + (%Jm is close to Hjm. So decrypt bit as 0 if closer to 0 then (QJ,

2 2
1 otherwise.

Security Theorem. If LWE holds, then (Gen, Enc, Dec) is CPA-secure.
Proof Idea.

Assume toward contradiction that we have an adversary E (eavesdropper), and define
the CPA-experiment as per usual. The challenger uses Gen() to generate a (sk, pk)
pair using the above procedure, then outputs the public key. The eavesdropper then
sends mg, m; to the challenger, who later outputs ¢ = Enc(pk, m;). E then ouptputs

3¢ is polynomial on m, the problem can be easy if it is a constant.
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b', and wins if b = ¢/ with probability greater than half. Define the following hybrids:

Hybrid 0. CPA-Exp for random bit b. (E outputs b with probability 1/2 + ¢).

Hybrid 1. Same experiment, except that now the public key pk = (A, u) is gener-
ated at random, that is, A & 7 Mo & gm.

Assuming decisional LW E holds, in the second hybrid, £ must output b with prob-
ability 1/2 + e — negl. We show that this yields a contradiction.

E sees (Am,um + (%J b). If m is big enough relative to n, say m > Q(nloggq), an
entropy argument gives
A A
(—, —x) ~ (random matrix, random Vector)
U u
The view of the eavesdropper then is statistically close to (random, random + (%J ),
which is statistically close to (random, random). Hence the view of E is independent
of b, and it outputs b with probability at most 1/2 4+ negl. Contradiction.

1.5 Lattice Trapdoors

Choose random z < {0,1}™. Choose A < Zy*™ such that Az =0 (mod q).
We claim that A is statistically close to a random matrix, if x is hidden.

Knowing = allows us to solve decisional LWE for A. Indeed, to distinguish between
(A, sTA+ E) from (A, u), where u is chosen at random, we can compute ux (mod q),
which should be random, and s” Az + ex = ex (mod ¢), which is small. We call
x a trapdoor, since without knowing x decisional LWE remains hard. We have the
following result.

Theorem 2 (Ajtai '99) We can sample T <— Z"*™, A <= 7™ such that:
(i) T is short

(i) T is full rank over Z

(#ii) AT (mod q) =0

(iv) A is statistically close to random

Knowing T yields a solution for the search LWE. Indeed, given (A,T,sTA + eT),
we have (sTA+ eI)T = eI'T (mod ¢). Since eI'T is short, this holds over Z. We
can use the fact that T is full rank over Z to recover e = (e'T)(T~'). So we have
el = ((eT A+ e")T (mod ¢))T~ !, and we have reduced the problem to the no-error
case, which we can solve using linear algebra.
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