
COS 533: Advanced Cryptography Princeton University
Lecture 12 (October 23, 2017)
Lecturer: Mark Zhandry Scribe: Daniel Vitek

Notes for Lecture 12

1 Pairings on Elliptic Curves

Let E/F be an elliptic curve over the field F, and write E[n] for the group of n-torsion
points in E(F). We recall the fact that if charF - n, E[n] ≡ Z/nZ ⊕ Z/nZ. (This
“two-dimensionality” of the group of torsion points is what makes interesting pairings
possible - there aren’t any interesting pairings on cyclic groups!)

Today we’ll define the Weil pairing

en : E[n]× E[n]→ µn,

where µn is the (multiplicative) group of nth roots of unity in F. The Weil pairing
satisfies the following properties:

1. en is symmetric under inversion: en(P,Q) = en(Q,P )−1;

2. en is bilinear (multiplicatively): en(P1 + P2, Q) = en(P1, Q) · en(P2, Q);

3. en is non-degenerate: that is, for any point P of order n there is some point Q
such that en(P,Q) 6= 1.

Note that the addition in the bilinearity property is actually what we’d usually think
of as multiplication in µn, and the 0 in non-degeneracy is just 1. Recall also that for
P to be of order n means that nP = 0 but mP 6= 0 for all 1 ≤ m < n. So any order
n point is n-torsion, but there are n-torsion points that are not order n.

1.1 Divisors

For a point P ∈ E(F), let [P ] be a formal symbol. A divisor D is a finite integer
linear combination of symbols [P ], where α[P ] + β[P ] = (α + β)[P ].

Given a divisor D, we’re interested in a few quantities:

• an integer, the degree degD =
∑

P∈E αP - note that this is well-defined by the
finiteness assumption;

1



• a finite set of points in E(F), the support suppD = {P ∈ E : αP 6= 0};

• a point in the elliptic curve, the sum Σ(D) =
∑

P∈E αP · P , where we use the
addition operation in the elliptic curve to add points.

Given two divisors, we can add them as formal linear combinations of points. Divisors
form a free abelian group, with identity the divisor with empty support. This group
has several important subgroups, all of which are also free abelian.

• the divisors with degD = 0;

• the divisors with Σ(D) = [O];

• the divisors with both degD = 0 and Σ(D) = [O], called the principal divisors.

To construct some examples of interesting divisors, let P ∈ E[n] be an arbitrary
nonzero n-torsion point. Write A = [P ]− [0], B = n[P ], and C = n[P ]− n[0]. Then
degA = 0 while Σ(A) 6= 0, and degB 6= 0 but Σ(B) = 0. Both degC = 0 and
Σ(C) = 0, so C is principal.

1.2 Rational functions and divisors

For this section it’s probably most useful to just think about E(C), as a lot of the
geometric intuition will be lost if you think about E(F).

By a rational function we just mean a ratio of polynomials

f(x, y) =
a(x, y)

b(x, y)
.

We write f(p) for f applied to p ∈ E(F). We call p a zero of f(x, y) if f(p) = 0, and
a pole of f(x, y) if f(p) =∞.

Zeroes and poles come with multiplicities, and sometimes occur in unexpected places.
For example, every polynomial p(x, y) is a rational function - take b(x, y) = 1. p(x, y)
has a number of isolated zeroes, sometimes with multiplicity. (One possible point of
confusion here: ordinarily the solution set to p(x, y) = 0 will look like a bunch of
curves. But we have to remember we also have a polynomial relation between x and
y from the definition of our elliptic curve E(F).) More surprisingly, every polynomial
has a pole with multiplicity equal to its degree at the point at infinity. (Multiplicities
are sometimes called orders or orders of vanishing.)

To every rational function f(x, y) on an elliptic curve E(F) we can associate a divisor

div(f) =
∑
p∈E(F)

αP [P ],

2



where we write

αP =


0 if f(P ) 6= 0;

+m if f has a zero of multiplicity m at P ;

−m if f has a pole of multiplicity m at P .

Note that div(fg) = div(f) + div(g), and div(f) = 0 if and only if f is constant -
this is a nontrivial fact in complex analysis. It turns out (via some more complex
analysis) that div(f) is principal for any rational function f and any principal divisor
is div(f) for some rational function f .

We can now upgrade function evaluation to accept divisors, not points: just define
f(D) =

∏
P∈suppD f(P )αP , where we ask that suppD and supp div(f) are disjoint so

that this makes sense. Now function evaluation is a homomorphism on the group of
divisors: we have f(D1 + D2) = f(D1)f(D2), though to be completely correct we
need to restrict ourselves to the subgroup of divisors whose support is disjoint from
that of f .

There’s one unusual property of this evaluation map, called Weil reciprocity. Let
f, g be rational functions, with principal divisors div(f), div(g) with disjoint support.
Then

f(div(g)) = g(div(f)).

We won’t prove this - it turns out to be easy to prove for genus zero curves, but
elliptic curves have genus one and a fair bit more work is needed.

2 The Weil Pairing

We’ll give two definitions of the Weil pairing: first a näıve definition which will have
some obvious flaws, and then the slightly more involved correct definition.

2.1 A näıve definition

For P ∈ E[n], write DP = [P ] − [O] and D′P = nDp = n[P ] − n[O]. Since P is
n-torsion, D′P is principal, and hence there exists a function fP with div(fP ) = D′P -
note the apostrophe on the divisor.

Given points P,Q, define the naive Weil pairing

e(P,Q) =
fP (DQ)

fQ(DP )
.

This definition is clearly wrong because fP has a (n-fold) pole at [O] and DQ has [O]
in its support, but we’ll ignore the problem for now and fix it later.

3



Note that the choice of fP , fQ doesn’t matter. Indeed, given rational functions f, f ′

with div(f) = div(f ′), we have div(f/f ′) = 0, so that f/f ′ is some nonzero constant
function c. Let D =

∑
p∈E αp[p] be a principal divisor with support away from the

poles of f (and f ′); then

(cf)(D) =
∏
p∈E

(cf(p))αp = f(D)c
∑

p∈E αp = f(D)cdegD.

But since D is principal its degree is zero, and hence (cf)(D) = f(D). In our context,
D′P and D′Q are principal, and hence the choice of fP , fQ is irrelevant.

It is immediate from our definition of the Weil pairing that it is symmetric up to
inversion, namely that e(P,Q) = e(Q,P )−1. It’s also straightforward to see that
e(P,Q) is an nth root of unity whenever P,Q are n-torsion. We have

e(P,Q)n =
fP (DQ)n

fQ(DP )n
=
fP (nDQ)

fQ(nDP )
=
fP (div(fQ))

fQ(div(fP ))
= 1,

where the last step uses Weil reciprocity.

2.2 Bilinearity of the Weil pairing

Recall that we want the Weil pairing to satisfy e(P1 + P2, Q) = e(P1, Q) · e(P2, Q),
or equivalently e(P1, Q) · e(P2, Q) · e(Q,P1 + P2) = 1. If we can show this, the Weil
pairing will also be linear (multiplicatively) in Q by symmetry up to inversion.

We calculate

e(P1, Q) · e(P2, Q) · e(Q,P1 + P2) =
fP1(DQ)

fQ(DP1)
· fP2(DQ)

fQ(DP2)
· fQ(DP1+P2)

fP1+P2(DQ)
.

Now we introduce the divisor ∆ = DP1+P2−DP1−DP2 = [P1 +P2]− [P1]− [P2] + [O].
Note that ∆ is a principal divisor, and so there is some rational function g with
div(g) = ∆. In fact

gn =
fP1+P2

fP1 · fP2

since div(fg) = div(f) + div(g) and n∆ = D′P1+P2
−D′P1

−D′P2
.

Then we calculate

fP1(DQ)

fQ(DP1)
· fP2(DQ)

fQ(DP2)
· fQ(DP1+P2)

fP1+P2(DQ)
=
fQ(DP1+P2 −DP1 −DP2)

g(DQ)n

=
fQ(∆)

g(nDQ)
=
fQ(div(g))

g(div(fQ))
= 1,

where the last equality uses Weil reciprocity again.

4



2.3 Fixing the Weil pairing

We return to the problem we noted earlier with the näıve definition of the Weil pairing.
Recall that if we are evaluating a function f on a divisor D, we need that none of the
poles or zeros of f coincide with any of the points in D. But when we write fP (DQ),
our function fP has zeroes and poles at P and O, while DQ is generated by the points
Q and O. So there’s a problem at the origin.

We fix this by choosing random points R, S ∈ E(F), and writing

D′′P = [P +R]− [R], D′′Q = [Q+ S]− [S].

Then we define the Weil pairing via

e(P,Q) =
fP (D′′Q)

fQ(D′′P )
.

This is in fact well-defined, since we’ve offset the supports of D′′P and D′′Q away from
the origin, where fP and fQ have poles.

We need to re-check various properties of the Weil pairing, but the calculations are
not substantially different than for the näıve definition.

3 Computations via Miller’s Algorithm

We’ve seen that the Weil pairing has the properties that we asked for at the outset.
But this is not useful yet, since we don’t have a way of computing the Weil pairing.
In particular our definition of the Weil pairing asks for a function fP with div(fP ) =
n[P ]− n[O], but we don’t have a way of computing such a function.

Miller’s algorithm gives a recursive method to compute such an fP . More precisely,
Miller’s algorithm computes a sequence of functions fr,P such that

div(fr,P ) = r[P ]− [rP ]− (r − 1)[O].

Note that if P is n-torsion, then div(fn,P ) = n[P ]− n[O] as desired. We also remark
that every div(fr,P ) is principal, so our claim makes sense.

We can take f0,P = 1, since we only ask div(f0,P ) = 0.

To inductively construct fr+1,P , we consider the difference

div(fr+1,P )− div(fr,P ) = ((r + 1)[P ]− [(r + 1)P ]− r[O])

− (r[P ]− [rP ]− (r − 1)[O])

=[P ] + [rP ]− [(r + 1)P ]− [O].

5



This divisor is principal, so there’s some function with zeros and poles at the pre-
scribed points. To find it, we use a bit of cleverness - we find the intersection of
the line through the points P, rP and the line through the points (r + 1)P,O. This
intersection is −(r+ 1)P . Then we add and subtract this point to our divisor so that
we can split it up as the sum of two (principal) divisors corresponding to lines as
follows:

[P ] + [rP ]− [(r + 1)P ]− [O]

= [P ] + [rP ] + [−(r + 1)P ]− [−(r + 1)P ]− [(r + 1)P ]− [O]

= ([P ] + [rP ] + [−(r + 1)P ]− 3[O])︸ ︷︷ ︸
UP,rP

− ([−(r + 1)P ] + [(r + 1)P ]− 2[O])︸ ︷︷ ︸
V(r+1)P

Figure 1: The divisors UP,rP and V(r+1)P on the real points of an elliptic curve E(C).

We can just write down the rational functions in x and y that give these two divisors.
For UP,rP , we are given the point P , and we can inductively store rP , so it’s very easy
to write down the equation of a line passing through these two points. For V(r+1)P

it’s even easier - we just compute (r + 1)P , and then we get the function x− x(r+1)P

for the divisor V(r+1)P .

6



3.1 Miller’s algorithm for cryptography

While Miller’s algorithm is useful, it’s not cryptographically effective in this form, as
we generally want n to be very large (at least 2128, possibly on the order of 2256). It
takes O(n) calculations to run Miller’s algorithm to find a suitable rational function
representing a divisor. Furthermore, we’ve got so many product factors that it takes
O(n) time to evaluate our rational function at any given point.

Thankfully, there is a version of Miller’s algorithm that computes f2r,P given fr,P , and
thus makes cryptographic-scale calculations feasible since we only require O(log n)
calculations to find fn,P or evaluate it.

We claim that the function f2r,P defined by

f2r,P = f 2
r,P ·

UrP,rP
V2rP

has the required divisor for Miller’s algorithm. Indeed, we can check

div

(
f 2
r,P ·

UrP,rP
V2rP

)
= 2 div(fr,P ) + div(UrP,rP )− div(V2rP )

= 2r[P ]− 2[rP ]− (2r − 2)[O]

+ 2[rP ] + [−2rP ]− 3[O]

− [2rP ]− [−2rP ] + 2[O]

= 2r[P ]− [2rP ]− (2r − 1)[O].

Here we just require that U is the line through rP and rP ; that is, the tangent line
to E(R) at rP . The slope of this line can easily be found explicitly using implicit
differentiation, so we can write down a rational function representing UrP,rP . This
lets us calculate the coordinates of the point 2rP as well, so we can find a function
representing the divisor V2rP .

7


	Pairings on Elliptic Curves
	Divisors
	Rational functions and divisors

	The Weil Pairing
	A naïve definition
	Bilinearity of the Weil pairing
	Fixing the Weil pairing

	Computations via Miller's Algorithm
	Miller's algorithm for cryptography


