
COS 533: Advanced Cryptography Princeton University
Lecture 11 (October 18, 2017)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 11

1 Elliptic Curve Cryptography (continued)

Three Party Key Agreement. Previously, we saw a two party key agreement
protocol. Given a group G with generator g, Alice generates a random a and publishes
ga. Similarly, Bob generates a random b and publishes gb. To agree on key k = gab,
Alice raises gb to the a, and Bob raises ga to the b. The Decisional Diffie Hellman
(DDH) assumption for the group G is that (g, ga, gb, gab) for randomly chosen a, b is
computationally indistinguishable from (g, ga, gb, gd) for randomly chosen a, b, d.

How do we extend this to handle three parties? A first attempt would be to have
Alice and Bob do the same thing as above, and include a third user Charlie who
generates a random c and outputs gc. However, if the key is gabc, it’s unclear how
any of the users can actually compute this. In fact, we can show that if Alice can
compute gabc, she can serve as an adversary to break the DDH assumption. Alice
could simply multiply gabc by g−a to recover gbc.

This motivates pairings, a tool which will make three party key agreement possible.

Pairings. A pairing e, also known as a bilinear map, maps e : G×G→ G2.

We will use different notation when for elements in G than for elements in G2, to be
consistent with the literature. Generally, G will be an elliptic curve group, while G2

will be some multiplicative group. Thus, we’ll use addition as the group operation
for G, but multiplication for the group operation in G2.

We will require some properties of e to make this map interesting:

• (Non-degeneracy) e could simply map everything to the identity in G2. Such
an e will satisfy the remaining properties, but would also be useless for building
crypto. We rule out such e.

• (Bilinearity) We require the map be linear in each input. This means that

e(P1 + P2, Q) = e(P1, Q) · e(P2, Q),

and
e(P,Q1 +Q2) = e(P,Q1) · e(P,Q2).

1

In almost all cases we are interested in, G will actually be a cyclic group. The
bilinearity property then implies that

e(aP, bQ) = e(P,Q)ab.

This identity will be most relevant to our discussion today.

Given these properties, we can see how to construct three-party key agreement. Sup-
pose we have a pairing e as defined above, where P is some generator for G. Alice
generates a random a and sends aP , Bob generates a random b and sends bP , and
Charlie generates a random c and sends cP . Alice can compute e(bP, cP) = e(P, P)bc,
and then raise this to the a power to get e(P, P)abc. Bob and Charlie can follow the
same template to compute e(P, P)abc. Non-degeneracy of the pairing is important
here, as we don’t want the key to always be the identity.

Number Theory. We’ll do a brief recap of number theory before moving on. Let
F be a field. It will sometimes be instructive to think of this as the real numbers or
the complex numbers, but in crypto we’ll be dealing with finite fields. An example
of a finite field would be Zp, consisting of the integers from 0 to p− 1 and arithmetic
is done mod p.

An extension field is a field F′ ⊇ F. In words, this is obtained by affixing some roots
of some polynomial that does not have roots over F (in other words, a polynomial
irreducible over F/ cannot be factored over F). A typical irreducible polynomial over
R is the polynomial x2 + 1. We can think of the complex numbers C as numbers
{a+ bi} where i is a solution to the polynomial x2 + 1.

Another example is over F5 (integers from 0 to 4 with multiplication done mod 5).
Here an irreducible polynomial is x2+x+1. For degree two polynomials irreducibility
is equivalent to saying this polynomial has no solutions over F5 (note that for higher
degree polynomials, irreducibility is a stronger condition than not having solutions
over F, since there exist reducible polynomials with no solutions). We can define an
extension field with 25 elements F25 = {a+ bx : a, b ∈ F5} where x2 = −x− 1. What
this means is that whenever we have an x2 term, we can reduce it to −x− 1.

Theorem 1 For any prime power q, there exists a unique finite field Fq on q ele-
ments, and moreover for any k, Fqk is an extension field of Fq.

For example, if I have F54 this theorem tells me that is an extension of both F5 and
F25.

Roughly speaking, we define the closure F̄ of a field F to be the field that results from
iteratively adding more irreducible polynomials forever. For example, the closure of
R is just C. Once we introduce i, now all polynomials of degree 2 or higher are
reducible.

2

For finite fields, the above theorem implies that this process never ends. Given Fq for
some prime power q, I can always consider the extension field Fq2 . In this case, we
can write

F̄q =
⋃
k≥1

Fqk .

Lastly, we define the characteristic of a field F to be the smallest n > 0 such that
n · 1 = 0. In other words, it’s the minimum number of times we need to add 1 to
itself to “wrap around” to 0. For Fpk for a prime p, the characteristic is p. For the
real numbers, the characteristic is taken to be infinity.

Elliptic Curves. Let E be an elliptic curve y2 = x3 + ax + b with a, b in some
underlying field F. While the coefficients defining this curve lie in F, the solutions
may live in an extension field of F. For any extension field F′ ⊇ F, we let E(F′) denote
the set of solutions over F′. It turns out that E(F′) is still a group under the elliptic
curve group laws discussed in the previous lecture.

We define a torsion point to be a point with finite order. In other words, a torsion
point is a point P such that nP = 0. This means that if I add P to itself n times
under the elliptic curve group law, I end up at the point at infinity.

Note that if we’re using parenthesis, E(F′) denotes the set of solutions over F′. We’ll
use brackets to denote the set of torsion points of order n over F̄ as E[n].

It’s not hard to show that the set of torsion points actually forms a group. Basically
you just need to show that the torsion points are closed under addition, which turns
out to be straightforward.

Theorem 2 If char(F) - n, or is 0, then E[n] is isomorphic to Zn ⊕ Zn (the set of
pairs of integers mod n, with pointwise addition and multiplication). in particular,
E[n] is finite.

The isomorphism might not be finite, but the important point is that this theorem
tells us the size of E[n].

Finally, we define µn = {x ∈ F̄ : xn = 1}, also known as the set of nth roots of unity
in F. We have |µn| = n.

Weil Pairing. We’ll be using the Weil Pairing as our pairing operation. For n such
that char(F) - n, there exists en : E[n] × E[n] → µn, with a number of desirable
properties. For this lecture, we won’t delve into what en actually is, and instead just
focus on its properties / how to build crypto from such an en.

• (Non-degeneracy) For any Q, en(P,Q) = 1∀P if and only if Q = 0. Clearly this
implies that en is not degenerate.

3

• (Bilinearity) en satisfies bilinearity, as defined earlier.

• (Antisymmetry) This property will actually hurt us later. It turns out that

en(P,Q) = en(Q,P)−1.

• en satisfies some other properties, but they won’t be relevant here.

For cryptography, we want our groups to be cyclic. But as we said, the set of torsion
points for a fixed n is isomorphic to a sum of two cyclic groups, and isn’t itself cyclic.
The most obvious fix is to pick some P ∈ E[n] and let G = 〈P 〉, the subgroup
generated by P . Then we can restrict en to this G. The issue with this idea is that
the resulting en is actually degenerate. To see this, we look at e(Q,R) and plug in
Q = aP and R = bP . Using bilinearity and antisymmetry, we get that e(Q,R) is its
own inverse. This means it’s either 1 or -1, but it turns out that the other properties
of en that we’re hiding will imply that it’s 1.

The next attempt is to pick P,Q ∈ E[n] such that e(P,Q) 6= 1. From the non-
degeneracy condition, such points exist. We let G = 〈P 〉. We define a second group
G′ = 〈Q〉. So now our pairing is en : G×G′ → µn. We’ll have non-degeneracy since
e(P,Q) 6= 1.

But now our inputs come from two different groups, which makes this an “asymmetric
pairing”. This is in contrast to a symmetric pairing, where the inputs come from the
same group. It turns out that this is going to make our lives a little harder in terms
of designing crypto, but for most applications, we can do some tweak to make it work
with asymmetric pairings.

One distinction is that n the symmetric case, you can pair an element by itself. In
the asymmetric case, you can’t pair an element by itself anymore. If we try to do it
for this particular pairing, the element by itself will always give 1.

Three Party Key Agreement from an Asymmetric Pairing. If we blindly
try to apply the Weil pairing to our construction where the key is e(P, P)abc, all the
keys will be 1, so this will be degenerate. But if we use the asymmetric pairing, we’ll
have to change the construction. Now instead of Alice just outputting aP , Alice will
also output aQ (and similarly for Bob and Charlie). This gives enough to compute
e(P,Q)abc. We won’t talk about security right now.

Further Considerations. Recall from last lecture (Hasse’s Theorem) that the size
of the elliptic curve group over some finite field F is |E(F)| ≈ |F|. The hardness of
discrete log grows with the size of the largest cyclic subgroups, so if this group were
the sum of two smaller groups, say two cyclic groups of square root size, suddenly
discrete log is easier.

4

So we usually want E(F) to be cyclic. For pairings, we’ll usually take P such that
〈P 〉 = E(F). But this creates a problem, since Q can’t lie in 〈P 〉. So Q must live
in some extension field E(F′). But this creates another problem, since now Q is an
element of F′ × F′ (recall that elliptic curve points are pairs of field elements). This
means Q takes more space to write down than P , which gives an asymmetry where
operations in G = 〈P 〉 are very fast, but operations in G′ = 〈Q〉 are much slower
(and elements take many more bits to write down).

When designing protocols using pairings, you should be careful to minimize operations
in G′ and have as much as possible happen in G. We may return to this later when
we describe more advanced protocols.

There is a theorem that tells us how far we the field extension needs to go before we
can select a Q.

Theorem 3 Suppose that the base field is Fq. Then Fqk , where k is the smallest
integer greater than 0 such that n | (qk − 1), is the smallest extension field of Fq such
that E[n] ⊆ E(Fqk).

Equivalently, the condition on k states that k is the smallest integer greater than 0
such that the set of nth roots of unity µn ∈ Fqk .

For security against 2128 time adversaries, we need n ≈ 2256. This means we need to
set |F| ≈ 2256. To store an element in G, we need one extra bit. Note that we don’t
need to store y, since we can just compute it given x, but we do store a bit indicating
if we’re using the positive or negative coordinate.

Now elements in G′ takes k × 256 bits to write down, and elements in G2 = Fqk also
take k×256 bits to write down. So we don’t want k to be very large, but we can’t make
it too small either. The MOV attack is an attack that reduces computing discrete
log in G to computing discrete log in Fqk . It tries to compute a given (P, aP) by
first pairing to get (e(P,Q), e(P,Q)a), and then solving discrete log in Fqk . There are
known methods for solving discrete log slightly faster on Fqk , and to defend against
these attacks we roughly need qk > q3000. This means we need k ≈ 12.

5

	Elliptic Curve Cryptography (continued)

