COS 533: Advanced Cryptography Princeton University
Lecture 10 (October 16, 2017)
Lecturer: Mark Zhandry Scribe: Dylan Altschuler

Notes for Lecture 10

1 Motivation for Elliptic Curves

Diffie-Hellman For exchanging keys publicly, the Diffie-Hellman protocol works
well in theory, but there is room for improvement in its efficiency in practice. Let us
quickly review how it works: Alice and Bob both have private keys, and they would
like to communicate in a public channel so as to have some key at the end of their
protocol that is known to both of them but not to any outside listener. The protocol
is as follows:

1. Let p be some large prime so that ¢ = 2p + 1 is also prime. Let g be some
element of Z; that has order p.

2. Alice picks an element a €* Zy; Bob picks an element b e’ Z,. They send g%, ¢
to each other respectively.

3. Their new shared private key is ¢* mod ¢, which they can both compute from
their hidden keys and from the received messages.

This security of this protocol relies on the hardness of Discrete Log and Decisional
Diffie-Hellman. Defining the security parameter as A = log(p), there are known

attacks that run in time:
9O\ /310g?/3 (1))

So, under the standard assumption on physical computation that we only need to
worry about at most 2'2®-time adversaries, we then need a security parameter of
A ~ 3000. If we wished to be even safer and stop even 2?°-time adversaries from
running this attack on us, we would need A ~ 15,000. However, this means that
carrying out our protocol could actually take billions of operations to exponentiate g,
which is not ideal. What if there were a replacement for DH that was more secure,
thus allowing us to use smaller security parameter?

Abstract Diffie-Hellman What was actually special about the particular group
Z;? We could try picking any group G with any operation ®; we just need to make
sure that the Discrete Log is still hard to solve for (G, ®) and that computing g, ¢°
is efficient. First, we give two examples of groups that do NOT work for this:

1. Consider the standard finite additive group Z;j. Here, the discrete log is simply
modular division, which is easy to compute, especially if we take the generator
g to be 1. Thus, the discrete log assumption could not hold for this group.

2. Let f be a OWP (one-way permutation) on Z; for some prime p, and let
multiplication be given by g @ h = f(f~'(g) + f~*(h)) and let g = f(1). Then,
g® = f(a), so solving the Discrete Log for this group would be equivalent to
inverting a OWF, which is assumed hard. But, even computing g ® h requires
inverting a OWF', so not only can an attacker learn nothing, neither can Alice
and Bob!

It turns out that finding a group for the DH protocol for which exponentiation is
efficient to compute but hard to invert is difficult. The only known groups are the
one used in standard DH and one that we will generate using Elliptic Curves!

2 Elliptic Curves

Background Elliptic curves can usually be put in a canonical form known as Weier-
strass Form:
v =2>+ar+b

We associate to this form a value called the discriminant:
A = —16(4a® + 27b°)

Of course, since complex roots appear in conjugates, any cubic has at least 1 real
root. If the discriminant is negative, then there is exactly one real root, and if the
discriminant is positive, then there are three. If A = 0, the curve can have corners,
so we generally avoid this case.

When considering an elliptic curve over the reals, we let the curve E be the set of
points

E:={(v,£V23 +ax +b):2° +axr +b >0}

so if the discriminant is positive and there are three roots, then the curve E will
actually be disconnected into two parts. One could also consider an Elliptic curve
over C? by letting z,y be complex variables. Then, the solution set has two (real)
dimensions in a space that has four (real) dimensions, so it is a two-surface. In fact, the
solution set is homeomorphic (a topological notion that roughly means “equivalent up
to continuous deformations”) to the torus, colloquially known as the “donut”. A nice
geometric intuition is that if we were to intersect the two-surface that is the elliptic
curve in C? with the real plane, the intersection would be exactly F, the elliptic curve
over the reals. There is another way to construct a shape homeomorphic to the torus

that will be useful in the future. Tile the plane with parallelograms using integer
combinations of two non-parallel vectors wu,v; consider the quotient map induced
by identifying all the edges of these parallelograms corresponding to u together and
identifying all the edges corresponding to v together. Then, the space reduces to
some fundamental parallelogram with opposing sides identified, which is of course a
torus.

Elliptic Curves as Groups Consider the following group induced by an elliptic
curve E: the group elements are points on the curve and one extra element that we
call co. The group operation P x @) is defined by the following procedure:

1. Draw the straight line [from P to (). If P and @) are the same point then
let [be the tangent line to E at P.

2. Let R be the third point at which [intersects E. Since F is a cubic, there
can be no more than 3 points of intersection. If P and () are connected by a
vertical line, then we use the convention that the third point of intersection is
oo. In the corner-case that P is a local maxima/minima and so there are only
two intersections, then P is essentially an intersection of multiplicity two, so we

let R = P (and similarly so for Q).

3. Let Px @ := (xg, —yr), where (zg,yr) are the z,y coordinates of R. In words,
flip R over the z-axis; this is our answer.

While this procedure might seem complicated, it is actually very easy to compute:
writing the equation of our line [as y = rx + s, we have:

= YQ —Yp
T —Xp
g — FQYP — TPYQ
T —Tp

Then, plugging this into the original equation for the elliptic curve and observing that
the intersections of [and E are given exactly by {P, @, R} (so that we know how the
equation factors), we can solve for xg:
r2x? 4 sy + s =9y =2 far+b

= 2= +(a—2rs)x+ (b—5*) =0=(z —xp)(z — 2¢g)(x — zR)

— J]R:TQ—JIP—CL’Q
where the last line follows from looking at the coefficient of x2. Then, we can solve
for yr by plugging xr into the equation for [given by y = rz + s. Thus, we see that

calculating P x @) is quite easy for P, in general positions. The corner cases are
easy, too, and can be done similarly.

Now, we would like to check that this properly defines an abelian group:

. Closure follows by construction.

. Commutativity holds since the line defined by P, is the same as the line
defined by @, P.

. The identity is oco.
. The inverse of P = (xp,yp) is simply P~! = (zp, —yp).

. The group is associative: one can check by brute-force computation. There is
also some geometric intuition: consider the elliptic curve over C?; the solution
set is homeomorphic to the torus, which can be thought about as a parallelogram
with opposing sides identified. Under this homeomorphism, the group operation
becomes standard complex addition (modulo the quotient relationship on the
edges of the torus), and modular arithmetic is associative. Thus, the group
operation in C? is associative. Since the group generated by the real solutions
to the elliptic curve is just a subgroup of this group, it is also associative.

Thus, the group generated by F is a valid commutative group, so it is a candidate
for Diffie-Hellman.

Elliptic Curves over Finite Fields In cryptography, we need objects to be dis-
crete to be nicely implementable on the computer. So, we can instead define E over
some finite field, e.g. [F,, instead of R. By doing this, we lose geometric intuition,
but the group laws still hold. However, there are still some obvious questions about
the discrete version of E:

1. Question: What is |E|? We need to be able to find E with |E| > 2! for this

to be useful in the DH protocol, so if there are only a few solutions to an elliptic
curve over [F, we would be in trouble.

Answer: Hasse’s Theorem states:

1El = (¢ + 1) <24
where ¢ := |F|. So, we are in business: just pick a large finite field.
. Question: How can we find points on the curve?
Answer: Randomly select x € F, compute 23 + ax + b and check if this is
a quadratic residue (which can be done efficiently using Jacobi symbols). We

expect roughly half the elements of F to be quadratic residues, so this will
quickly find us an element.

3. Question: How can we find points on the curve?

Answer: Randomly select € F, compute 2® + ax + b and check if this is a
quadratic residue (which can be done efficiently). We expect roughly half the
elements of F to be quadratic residues, so this will quickly find us an element.

4. Question: Can we count the number of points on the curve? Can we learn
anything about the group structure of E7

Answer: Schoof’s algorithm lets us count points, and there are advanced the-
orems that completely characterize the structure of E.

Attacks on Elliptic Curves How hard is the Discrete Log for elliptic curves? A
“generic attack” is an attack that just uses group operations and completely ignores
additional structure. The brute force attack takes time O(|E|) ~ O(q). The “Baby-
step Giant-step” algorithm takes O(q'/?). It turns out that this bound is actually
tight for generic attacks.

What about non-generic attacks? There is a technique called “pairings” that will not
be discussed in this class. One can also use corner cases for certain curves, but this
only applies to sparse subsets of elliptic curves. So, if one is careful to avoid using
this small set of curves, O(ql/ 2) is the best attack known. Thus, for security against a
2128_time adversary, we only need use 256 bits (and for a 22°°-time adversary, we only
need use 512 bits), which is far more efficient that standard Diffie-Hellman. Alice
and Bob can compute using tens of millions of operations instead of tens of billions.
Thus, both the communication and computation costs are much cheaper when using
elliptic curves over standard Diffie-Hellman.

	Motivation for Elliptic Curves
	Elliptic Curves

