
COS 533: Advanced Cryptography Princeton University
Homework 2 Due: October 27, 2017

Homework 2

1 Problem 1 (30 points)

Sometimes, it is useful to assume stronger properties from a one-way function than
just one-wayness. For example, we may want the function to be collision resistant,
which means that it is hard to find two inputs that map to the same output.

Definition 1 A function H : {0, 1}λ → {0, 1}n(λ), where n(λ) < λ, is collision
resistant if, for all PPT adversaries A, there exists a negligible ε such that

Pr[x0 6= x1 ∧H(x0) = H(x1) : (x0, x1)← A(1λ)] < ε(λ)

We usually call such functions hash functions.

(a) Assuming the existence of a one-way function f , construct a function f ′ :
{0, 1}λ → {0, 1}n(λ) such that (1) f ′ is compressing (n(λ) < λ), (2) f ′ is one
way, but (3) f ′ is not collision resistant. The domain and range of f ′ are allowed
to be different than the domain and range of f .

(b) Show that any collision resistant hash function is also a one-way function. (Hint:
since a collision resistant hash function is compressing, there are guaranteed to
be many collisions. Show how to use a one-way function adversary to find such
a collision).

(c) Suppose we relax our computational model to allow for non-uniform adversaries
A. That is, A consists of a PPT algorithm A′, as well as an infinite sequence of
advice strings a1, a2, . . . where the bit-length of ai is polynomial in i. On inputs
of length λ, A runs A′ on whatever input it was given, as well as the advice
string aλ.

Show that collision resistant hash functions are impossible against non-uniform
adversaries.

While non-uniform adversaries are perhaps an unrealistic model of computation, the
above motivates a slightly different notion of collision resistant hash functions. Here,
the hash function is keyed, and an adversary given the key must try to find a collision
with respect to that key.

1



Definition 2 A keyed function H : {0, 1}λ × {0, 1}m(λ) → {0, 1}n(λ), where n(λ) <
m(λ), is collision resistant if, for all PPT adversaries A, there exists a negligible ε
such that

Pr[x0 6= x1 ∧H(k, x0) = H(k, x1) : (x0, x1)← A(k), k
$← {0, 1}λ] < ε(λ)

(d) Explain why your non-uniform attack from part (c) does not apply to keyed
hash functions.

(e) Given a keyed collision resistant hash function H : {0, 1}λ × {0, 1}m(λ) →
{0, 1}n(λ) with n(λ) < m(λ), show how to construct a new keyed collision re-
sistant hash function H ′ : {0, 1}λ × {0, 1}m′(λ) → {0, 1}n(λ) where m′(λ) is any
arbitrary polynomial in λ. In particular, even if H had m(λ) < λ, H ′ can have
m(λ)� λ. To do so, each evaluation of H ′ will run H several times.

2 Problem 2 (15 points)

In class, we tried to build a signature scheme from any one-way function. However, we
ran into a roadblock, where we needed a one-time signature scheme whose message
space was much larger than its public key. Here, we will use hashing to solve the
problem.

Let (Gen, Sig, Ver) be a one-time signature scheme with public keys of length p(λ)
and messages of length n(λ), where n(λ) may be smaller than p(λ). Let H : {0, 1}λ×
{0, 1}m(λ) → {0, 1}n(λ) be a keyed hash function, where m(λ) is much larger than p(λ).
Define (Gen′, Sig′, Ver′) as the following signature scheme for messages of length m(λ):

• Gen′(1λ): run (sk, pk) ← Gen(1λ). Choose a random k ← {0, 1}λ. Output
(sk′ = (sk, k), pk′ = (pk, k)).

• Sig′(sk′,M) = Sig(sk, H(k,M)). That is, first hash the message with H (using
the hash key k), and then sign using Sig.

• Ver′(pk′,M, σ) = Ver(pk,H(k,M), σ).

(a) Show that, if H is collision resistant and (Gen, Ver, Sig) is one-time EUF-CMA
secure, then so is (Gen′, Ver′, Sig′). Therefore, by combining with with Problem
1, we have a one-time signature scheme from any collision resistant hash func-
tion, where the message space is much larger than the public key size. This is
sufficient for building a full signature scheme as we saw in class.

(b) Show that the collision resistance of H is also necessary for security. That is, if
H is not collision resistant (but still compressing), then (Gen′, Sig′, Ver′) cannot
possibly be a secure one-time signature scheme.

2



Collision resistant hash functions are widely believed to exist, and there are many
constructions based on number theory. However, it is also widely believed that a
generic one-way function is not sufficient to build a collision resistant hash function.
Therefore, we are still short of our goal of constructing signatures from arbitrary
one-way functions. Fortunately, a slightly weaker notion of collision resistant hashing
functions, called universal one-way hash function (UOWHF), is possible from one-
way functions, and is sufficient to build signature schemes, albeit with a slight tweak
to the construction above.

3 Problem 3 (35 points)

Shamir secret sharing solves the t-out-of-n secret sharing problem, where we wish to
divide a secret amongst n people, such that any t of them can reconstruct the secret,
but no t− 1 of them can. Here, we will investigate generalizations to more complex
access structures.

(a) In a weighted threshold secret sharing scheme, each user i has a non-negative
integer weight wi, and there is a threshold t ≥ 0. The goal is to secret share a
message to n users, such that a set of users S can reconstruct the secret if and
only if the total weight of the users in S, wS =

∑
i∈S wi, is at least t.

Show how to modify Shamir secret sharing so that it works for thresholds. In
the case where all weights are a polynomially bounded, your scheme should be
efficient.

More general structures are also possible. In general, a secret sharing scheme is
specified by a collection C of allowable subsets S. C is called an access structure. We
want that any set S ∈ C can reconstruct the secret, but any S /∈ C cannot reconstruct
the secret. For this to make sense, C must be monotone, meaning if S ∈ C and S ⊆ S ′,
then S ′ ∈ C. This is because S ′ could just pretend it was actually S, and ignore the
shares for users in S ′ \ S.

A monotone boolean formula is a circuit consisting of AND and OR (no NOT gates)
where the fanout of each gate is one (so that the output wire of each gate feeds into
exactly one gate).

Associate subsets S ⊆ [n] with bit strings x ∈ {0, 1}n, where xi = 1 if and only if
i ∈ S. Let F be a monotone boolean formula on n-bit inputs. Let C be the access
structure defined as the set of S such that F (S) = 1. Since F is monotone, so is C.

3



(b) Construct a secret sharing scheme for the access structure C. The size of shares,
and the running times for sharing and reconstruction, should be polynomial in
the size of F .

(Hint: first devise a secret sharing scheme for the special cases where F is a
single gate. Your overall scheme will consist of many secret sharings, one for
each gate, appropriately stitched together. The property of the scheme should
be that a set of users S can reconstruct the secret for a particular gate if and
only if that gate outputs 1 when F is applied to S.)

Your answer to part (b) can be used to construct secret sharing schemes for arbitrary
access structures, since for any monotone access structure C, there is a monotone
formula F that decides C. Unfortunately, however, F may be exponentially large and
the scheme will therefore not be efficient and will require exponentially large shares.

However, if we rely on computational assumptions, we can do better. A monotone
circuit is a circuit consisting of AND and OR gates (no NOT gates). The difference
from a formula is that each output wire can feed into many other gates. Let C be a
monotone circuit, and C be the access structure defined by C: S ∈ C if and only if
C(S) = 1.

(c) Construct a secret sharing scheme for the access structure C. For concreteness,
you may consider the secret to be a single bit b. We no longer ask for perfect
secrecy of b, but instead only computational. That is, for any set S /∈ C, given
the shares for users in S, it should be computationally infeasible to distinguish
a sharing of b = 0 from a sharing of b = 1.

(Hint: take the circuit C, and write it as a sequence of AND, OR, and FANOUT
gates. AND and OR are exactly as you’d expect, except they only have a single
output wire that can feed into only a single gate. To allow for more fanout, a
FANOUT gate takes as input a single wire, and duplicates it on several output
wires.

Your scheme will treat AND and OR gates as in part (b), but will have to do
something different for FANOUT gates. To handle FANOUT gates, you may
assume one-way functions, or anything implied by one-way functions (PRGs,
PRFs, secret key encryption, etc). )

4 Problem 4 (15 points)

In class, we discussed fairness in MPC protocols, where either all parties learn the
output, or none of them do. We also discussed how in general, this seems impossible:
the receiver of the second-to-last message must know the output (since she will not

4



receive any more messages). Therefore, if that user is corrupt, she can abort and not
send the last message, preventing the recipient from learning the message.

One possible way around this difficulty is to slightly relax fairness. Suppose the
output is a single bit. Instead of saying either all parties learn the output or none of
them do, instead we will say that at any point in the protocol, all the parties have a
guess of what the output would be, but they will have only limited confidence in the
guess. At the beginning, the guess will be completely uncorrelated with the actual
output, and at the end, the guess will be perfectly (or at least statistically) correct.
In each round, the guess is gradually refined. If a malicious user aborts prematurely,
she will only have her imperfect guess, and the other users will have a guess with
similar accuracy.

Now our last round adversary might learn the bit with certainty, but then all other
users will have a pretty good idea of what the output is supposed to be.

Suggest how this idea might be implemented. You may assume a MPC protocol for
arbitrary functionalities. You do not need to formally prove that the protocol achieves
the desired fairness goal, but you should explain informally why it should.

5


	Problem 1 (30 points)
	Problem 2 (15 points)
	Problem 3 (35 points)
	Problem 4 (15 points)

