
COS 533: Advanced Cryptography Princeton University
Homework 1 Due: October 11, 2016

Homework 1

1 Problem 1 (15 points)

Let x ∈ {0, 1}λ, and let H : {0, 1}λ → {0, 1} be a function such that H(r) = 〈x, r〉
for at least a fraction p its inputs r. Here, 〈x, r〉 means the inner product mod 2 of x
and r: 〈x, r〉 =

∑λ
i=1 xiri mod 2.

In class, we showed that if p ≥ 3
4

+ ε for a non-negligible ε, then it is possible to
determine x efficiently, given only polynomially-many queries to H. Here, you will
show that this is essentially tight.

(a) Construct two inputs x0 6= x1 and a function H such that H(r) = 〈x0, r〉 for at
least 3/4 of its inputs, and at the same time H(r) = 〈x1, r〉 for at least 3/4 of
its inputs. Note that the two sets of inputs may be different.

This is why, when moving to the regime where p = 1
2

+ ε, we could no longer
give an algorithm that outputted a single x. Instead, we had to output multiple
x values, one of which was the right answer.

(b) Generalize the above construction to more inputs. For any integer n, construct
n distinct inputs x0, . . . , xn−1 and a function H such that H(r) = 〈xi, r〉 for at
least p fraction of inputs simultaneously for all i, where p = 1

2
+ 1

2n
. Here, you

may assume n is a power of 2.

2 Problem 2 (20 points)

In class, we built a PRF with where the range was equal to the key length, and the
domain was arbitrary. Here, we will show how to vary the key length, domain, and
range.

(a) Let PRF : {0, 1}λ × {0, 1}n → {0, 1}m be a PRF. Give a simple construction of
a PRF PRF′ : {0, 1}λ × {0, 1}n′ → {0, 1}km, for a given value k (which may be
polynomial in λ). Here, n′ should only be slightly smaller than n. Prove that
PRF′ is secure, assuming only the security of PRF.
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(b) Let PRF : {0, 1}λ×{0, 1}n → {0, 1}λ be a PRF where the range is the same as the
key length. Let PRF′ : {0, 1}λ×{0, 1}kn → {0, 1}λ for a given integer k be defined
as follows: on input x ∈ {0, 1}kn, write x = (x1, . . . , xk) for xi ∈ {0, 1}n. Then
run PRF on k and x1 to obtain a new PRF key kx1 = PRF(k, x1). Then run PRF

again, this time with key kx1 and input x2 to derive a different PRF key kx1,x2 =
PRF(kx1 , x2). Repeat this process to derive PRF keys kx1,x2,x3 , kx1,x2,x3,x4 , etc,
until you have computed kx1,x2,...,xk . Define kx1,x2,...,xk as the output of PRF′ on
input (x1, . . . , xk).

Prove that PRF′ is a secure PRF. If it helps, you may assume that the queries
the adversary makes are fixed and known in advance (like we did when we
constructed PRFs from PRGs).

(c) Explain how the PRF construction from any PRG we saw in class is a special
case of Part (b).

3 Problem 3 (25 points)

In class, we defined security for a message authentication code as follows. Let
(MAC, Ver) be a MAC. Define EUF-CMA-Exp(A, λ) as the following experiment on
A:

• The challenger Ch chooses a random key k ∈ {0, 1}λ

• A is allowed to make many queries on arbitrary messages m. In response, the Ch
runs σ ← MAC(k,m), and gives σ to A. These queries can be made adaptively
in sequence, so for example the third query message may depend on the MACs
obtained from the first two queries.

• Finally, A outputs a forgery candidate (m′, σ′). Ch checks that (m′, σ′) was not
the message/MAC pair in one of A’s queries, and that Ver(k,m′, σ′) accepts. If
both checks pass, Ch outputs 1; otherwise it outputs 0.

We define security by saying, for all PPT adversariesA, the probability that EUF-CMA-Exp(A, λ)
outputs 1 is negligible.

Here, we consider a more general variant. EUF-CMA-Exp′(A, λ) is identical to the
above, except that we allow A to additionally make verification queries, interleaved
arbitrarily with the choosen message queries. Here, A makes a query on (m,σ), and
Ch returns the result of Ver(k,m, σ). Otherwise, the two experiments are the same.
Security is defined analagously.

Show that the two definitions of security are equivalent. Namely, given an
adversary A that breaks EUF-CMA security, construct an adversary that
breaks EUF-CMA′ security, and vice versa.
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4 Problem 4 (40 points)

Here, you will extend the Goldreich-Levin theorem to multiple hardcore bits.

Let F : {0, 1}λ → {0, 1}n(λ) be a one-way function. Let F ′ : {0, 1}kλ+λ → {0, 1}kλ+n(λ)
be the function

F ′(r1, . . . , rk, x) = (r1, . . . , rk, F (x))

Assume k is logarithmic in λ. Consider the functions hi(r1, . . . , rk, x) = 〈ri, x〉. Show
that h1, . . . , hk are all simultaneously hardcore bits for F ′. This means that for any
PPT adversary A, there exists a negligible ε such that∣∣Pr[1← A(F ′(x′), h1(x

′), . . . , hk(x
′)) : x′ ← {0, 1}kλ+λ]

−Pr[1← A(F ′(x′), b1, . . . , bk) : x′ ← {0, 1}kλ+λ, b1, . . . , bk ← {0, 1}]
∣∣ < ε(λ)

To prove this, you can use the basic Goldreich-Levin theorem as a black box (but
perhaps for a slightly modified one-way function); you do not need to reprove GL
from scratch in this more general setting.

5 Problem 5 (0 points)

Please let us know roughly how long you spent on this homework assignment (for
calibrating future homework assignments).
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