
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 8 (10/11/2016)
Lecturer: Mark Zhandry Scribe: Divyarthi Mohan and Fermi Ma

Notes for Lecture 8

Note: These lecture notes cover lecture 8 and the beginning of lecture 9, where we
finished the Order Revealing Encryption security proof.

1 Last Time

Last time, we saw that iO and lossy encryption implies Fully Homomorphic En-
cryption (FHE). We had to use a tool called complexity leveraging. Essentially, the
reduction was so bad that we had to assume our usual primitives were subexponen-
tially secure. Today, we’ll see another setting where complexity leveraging is helpful
/ necessary.

2 Order Revealing Encryption

We will see a new kind of encryption called Order Revealing Encryption (ORE) that
allows us to publicly learn the ordering of information but nothing else. We will then
see how to construct an ORE scheme from iO and one-way functions (OWF).

2.1 Motivation

Suppose we have a database of, say, medical records that are ordered according to
the patients’ blood pressure. We might want to outsource this to a cloud provider,
but we don’t want the cloud to learn private patient information. Suppose we now
want to retrieve information from the cloud, such as ciphertexts corresponding to all
patients whose blood pressure is higher than some threshold. We ideally want the
cloud to do a binary search, which requires the cloud to be able to perform comparison
computations on ciphertexts. Note that FHE isn’t good enough to solve this problem,
since FHE schemes use circuit computations and thus a binary search requires linear
size.

In this setting, the cloud will learn information about how the ciphertexts are ordered.
However, we don’t want to give away anything beyond the ordering.

1



2.2 Formalism

An ORE scheme parameterized by N consists of the four algorithms Gen, Enc, Dec
and Comp defined as follows,

• Gen() outputs a secret key, public key pair sk, pk.

• Enc(sk, m) takes as input a secret key sk and a message m ∈ [0, N ], and outputs
cyphertext c, the encryption of m under sk.

• Dec(sk, c) takes as input a secret key sk and a cyphertext c, and outputs m, the
decryption of c.

• Comp(pk,c0,c1) takes as input a public key pk and cyphertexts c0, c1. If c0 < c1,
it outputs <, and otherwise it outputs ≥.

If we give the cloud the encrypted data and pk, it can perform a binary search using
Comp.

2.3 Correctness

Let sk, pk← Gen().

For all m ∈ [0, N ], we require Dec(sk,Enc(sk,m)) = m.

For all m0 < m1, Comp(pk,Enc(sk,m0),Enc(sk,m1)) must output <

2.4 Security

We need to use secret key encryption because otherwise an adversary can encrypt and
use a binary search to decrypt any cyphertext. The encryption key and the compare
key should not be available to an adversary together.

For the same reason, we cannot achieve CPA-security. Recall that for CPA-security,
the adversary A gets the public key pk from the challenger C and then does poly-
nomially many encryption queries (that is, A sends mi and gets the ciphertext
ci = Enc(sk,mi)). Then A sends 2 distinct plaintexts m∗0,m

∗
1 different from all the

mi’s and C sends back c∗, an encryption of m∗b for some b = 0, 1. A can then do
more encryption queries (not on m0∗ or m∗1) and outputs a guess b′ for b. We want
Pr(b′ = b) < 1/2 + negl.

This is NOT attainable because having oracle access to encryption allows us to de-
crypt. For example if A queries on an m between m∗0 and m∗1 and gets the ciphertext
c = Enc(sk,m), then running Comp(pk, c, c∗) reveals b′.

2



So we will require that [m∗0,m
∗
1] ∩ {mi}i = ∅. This is the ’best possible’ security that

we can get.

We also note that we can assume Enc is deterministic because we can tell if we have
encrypted the same text twice by running Comp on the ciphertexts.

It is possible to get achieve adaptive security, but today we just consider the weaker
notion of static security.

The security experiment is as follows. The adversary A commits to messages m∗0,m
∗
1

as well as query messages m1,m2, . . . ,mt such that mi /∈ [m∗0,m
∗
1], and sends these

to the challenger. The challenger responds by sending pk, c∗ = Enc(sk,m∗b), ci =
Enc(sk,mi) ∀i ∈ [t]. Then A outputs a guess b′ for b.

The security requirement is that for all PPT A,

Pr[b′ = b] ≤ 1/2 + negl.

3 Construction of ORE using iO

There are some difficulties if we construct ORE using the straightforward encryption
approach. Suppose we have

• Gen(). Define Pk((r0, c0), (r1, c1)) as follows:

for b = 0, 1

mb ← cb ⊕ PRF(k, rb)

if m0 < m1, output <

if m0 ≥ m1, output ≥

Output (sk, pk) = (k, iO(Pk))

• Enc(sk,m). Choose a random r ← {0, 1}λ, and output (r,PRF(sk, r ⊕m)).

• Dec(sk, (r, c, )). Output c + PRF1(k1, r).

• Comp(pk, (r0, c0), (r1, c1)). Pk is given in pk. Output Pk((r0, c0), (r1, c1))

Claim: The above scheme is not secure, even if we replace iO with VBBO.

(For simplicity let us assume instead of XOR (⊕) we are doing + mod N)

Consider the following attack. The adversary A chooses some m∗0 and m∗1 = m∗0 + 2.
Also, query on m = m∗1 + 1. The challenger sends back (r∗, c∗) = Enc(sk,m∗b) and
(r, c) = Enc(sk,m). We want to set c′ to be an encryption of mb + 2, so we set
c′ = PRF(k, r∗)+(m∗b+2). Thus (r∗, c′) ≈ Enc(k,m∗b+2). By running P̂ ((r∗, c′), (r, c))

3



we can easily distinguish between Enc(m∗0) and Enc(m∗1). If b = 0 then P̂ outputs <,
else if b = 1 then P̂ outputs ≥. Thus A correctly guess b.

This attack was possible because we could change the ciphertext such that it corre-
sponded to an encryption of a changed plaintext. We call such ciphertexts malleable.
We want an encryption that is non-malleable; tweaking the ciphertext should not give
an encryption of another plaintext.

The non-malleable scheme uses three pseudorandom functions PRF1,PRF2,PRF3 and
is as follows.

• Gen(). Define Pk1,k2,k3((r0, c0, d0), (r1, c1, d1)) as follows:

for b = 0, 1

mb ← cb − PRF1(k1, rb)

if rb 6= PRF3(k3,mb) then ABORT

if PRG(db) 6= PRG(PRF2(k2, (rb,mb))) then ABORT

if m0 < m1, output <

if m0 ≥ m1, output ≥

Output (sk, pk) = ((k1, k2, k3), iO(Pk))

• Enc(sk,m). We have sk = (k1, k2, k3). Set r = PRF3(k3,m); output (r,PRF1(k1, r)+
m,PRF2(k2, (r,m)))

• Dec(sk, (r, c, d)). We have sk = (k1, k2, k3). Output c− PRF1(k1, r).

• Comp(pk, (r0, c0, d0), (r1, c1, d1)). Pk1,k2,k3 is given in pk. Output Pk1,k2,k3((r0, c0, d0), (r1, c1, d1))

Theorem 1. (informal) The above construction is secure if we assume subexponen-
tially secure iO.

Proof. We prove security for the case where m∗1 = m∗0 + 1. We simply repeat this ar-
gument to extend it to arbitrary m∗0,m

∗
1, but note that this requires subexponentially

secure iO.

As usual, the proof will be done via a sequence of hybrids.

Hybrid 0. This is the real experiment with b = 0.

Hybrid 1. Let h∗ = PRG(PRF2(k2, (r
∗
1,m

∗
1))). Define P ′ as follows.

4



P ′h∗,k2{r∗1 ,m∗
1}

((r0, c0, d0), (r1, c1, d1)):

for b = 0, 1

mb ← cb − hb

if PRF3(k3,mb) 6= rb then ABORT

if (rb,mb) = (r∗1,m
∗
1) then hb = h∗

else hb = PRG(PRF2(k2{r∗1,m∗1}, (rb,mb)))

if hb 6= PRG(db) then ABORT

if m0 < m1, output <

if m0 ≥ m1, output ≥

This hybrid will be the same as Hybrid 0, except pk = iO(P ′).

Since P ′ ≡ P , by iO we have Hybrid 0 ≈c Hybrid1.

Hybrid 2. This hybrid will be the same as Hybrid 1, except we set h∗ = PRG(s)
where s is truly random.

By punctured PRF security we have Hybrid 1 ≈c Hybrid 2.

Hybrid 3. This hybrid will be the same as Hybrid 2, except h∗ is truly random.

By PRG security we have Hybrid 2 ≈c Hybrid 3.

So now we will never (as in, with only negl probabilty) decrypt to m∗1.

Hybrid 4. Define P ′′ as follows.

P ′′h∗,k2{r∗1 ,m∗
1}

((r0, c0, d0), (r1, c1, d1)):

for b = 0, 1

mb ← cb − hb

if PRF3(k3,mb) 6= rb then ABORT

if (rb,mb) = (r∗1,m
∗
1) then hb = h∗

else hb = PRG(PRF2(k2{r∗1,m∗1}, (rb,mb)))

if hb 6= PRG(db) then ABORT

if {m0,m1} = {m∗0,m∗1} then ABORT

if m0 < m1, output <

if m0 ≥ m1, output ≥

This hybrid will be the same as Hybrid 3, except we set pk = iO(P ′′) with h∗ still
random.

Hybrid 5. We revert back to h∗ = PRG(s)

Hybrid 6. We revert back to h∗ = PRG(PRF2(k2, r
∗
1,m

∗
1))

5



Hybrid 7. We set pk = iO(P ′′′), where P ′′′ is a program identical to P but aborts if
{m0,m1} = {m∗0,m∗1}.
(At this point, we transitioned to lecture 9.)

To finish the proof, we need to puncture the PRFs so that encryptions of m∗0 and m∗1
are truly random strings.

We need PRF3 to be injective. It turns out that we can build PRFs that are injective
and puncturable. We need m∗0 and m∗1 to map to unique r’s and also be different from
all other r’s.

We puncture PRF3 at m∗0,m
∗
1. In doing so, we can replace r∗0, r

∗
1 (the random outputs

corresponding to m∗0,m
∗
1) with random strings.

Similarly, we puncture PRF1 at r∗0, r
∗
1. We can replace c∗0, c

∗
1 (the corresponding out-

puts) with random stringsas well.

Finally, we puncture PRF2 at (r∗0,m
∗
0) and (r∗1,m

∗
1) and replace d∗0, d

∗
1 with random

strings. Note that this requires PRF2 to be puncturable at two spots, but it turns out
that this is very easily achievable.

After doing this, we get to the following program (we won’t write out all the subscripts
but they are there)

P ′′′((r0, c0, d0), (r1, c1, d1)):

for b = 0, 1

if (rb, cb, db) = (r∗e , c
∗
e, d
∗
e), set mb ← m∗ + e

else if rb ∈ {r∗0, r∗1}, then ABORT

else mb ← cb ⊕ PRF1(k1{r∗0, r∗1}, rb)
if mb ∈ {m∗0,m∗1} then ABORT

if rb 6= PRF3(k3{m∗0,m∗1},mb) then ABORT

if PRG(db) 6= PRG(PRF2(k2{, }, (rb,mb))) then ABORT

if m0 < m1, output <

if m0 ≥ m1, output ≥

So r∗0, c
∗
0, d
∗
0 and r∗1, c

∗
1, d
∗
1 are hardcoded into the program, but the behavior is the

exactly the same on both inputs.

What we’ve shown is that an encryption of m∗0 is computationally indistinguishable
from m∗0 + 1, and m∗0 + 1 is computationally indistinguishable from m∗ + 2, and
so in general m∗ is indistinguishable from m′. Potentially there is an exponential
distance between the messages, so to actually get order revealing encryption, we need
to assume subexponential hardness of all the primitives.

6



4 Summary

In ORE we can publicly learn some information but not everything. This is a special
case of a more general idea called Functional Encryption (FE).

FE consists of four algorithms Gen,Enc,Dec,KeyGen defined as follows.

• Gen() gives a secret key msk.

• Enc(msk,m) outputs the cipher text c, which is the encrption of message m.

• Dec(msk, c) outputs a plaintext m, which is the decryption of c.

• KeyGen(msk, f) outputs a key skf given a function f .

• Dec(skf , c) outputs f(m) where m = Dec(msk, c).

We can also consider the case where f is multivariable function. In case of a ORE f
is a two variable function and skf is Comp.

We can also define a corresponding public key version of FE. The ‘right notion’ of
FE gives iO. We can also construct FE using iO. In fact, with some effort it is even
possible to construct FE from iOwithout the exponential loss, meaning we do not
need to rely on sub-exponentially secure iO. The result also gives ORE without the
exponential loss.

7


	Last Time
	Order Revealing Encryption
	Motivation
	Formalism
	Correctness
	Security

	Construction of ORE using iO
	Summary

