
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 7 (10/06/16)
Lecturer: Mark Zhandry Scribe: Jordan Tran

Notes for Lecture 7

1 Introduction

In this lecture, we show how to build fully homomorphic encryption (FHE) from in-
distinguishability obfuscation (iO). In previous applications, we use iO in conjunction
with one-way functions (OWF). However, it seems that OWF alone is not sufficient
in this case. We know that FHE implies collision resistance hash function (CRHF)
[IKO’05]. Therefore, if we can obtain FHE from iO and OWF, we will also get CRHF.
However, there is an argument (not a concrete proof) that iO and OWF alone is un-
likely to imply CRHF [AS’15]. As such, we believe that in order to build FHE from
iO, we are going to need more than just OWF.

2 Construction of FHE from iO

2.1 First Attempt

Suppose we have a public key encryption (PKE) scheme consists of three algorithms:
GenPKE, EncPKE, and DecPKE. We are going to start of with a FHE scheme that looks
very similar to what we have seen with other applications of iO:

• Gen(λ): (dk, ek)←GenPKE(λ), K←GenPRF(λ). Sets ek as the encryption key and
(dk,K) as the decryption key. Outputs (ek, (dk,K)).

• Enc(ek,m): EncPKE(ek,m)

• Dec(dk, ct): DecPKE(dk, ct)

• Eval(op, ct0, ct1): Outputs Obf(Pdk,K,ek)(op, ct0, ct1) where op is an operation
(+,×) and Obf(Pdk,K,ek) is an obfuscation of the following program:

Pdk,K,ek(op, ct0, ct1) :

mb = Dec(dk, ctb) b ∈ {0, 1}
m = m0 op m1

r = PRF(K, (op, ct0, ct1))
Outputs Enc(ek,m; r)
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Note that obfuscation only works with deterministic programs. Since the encryption
algorithm is necessarily randomized, we need to explicitly calculate the random coin
r and give it to Enc in Pdk,K,ek. However, we do not know how to prove security with
the above construction. Therefore, we will have to relax the definition of FHE.

2.2 Leveled FHE

In a regular FHE scheme, the homomorphic operation should produce a ciphertext
under the same encryption key as the two input ciphertexts. However, in a leveled
FHE scheme, we will allow the homomorphic operation to produce a ciphertext under
a different encryption key.

So instead of just one pair of (ek, dk), we now have (ek1, dk1), (ek2, dk2), ..., (ekn, dkn).
If we add or multiply two ciphertexts under ek1, we will get a ciphertext under the
next level ek2. As long as the users have all the decryption keys, they would be be
able to decrypt any messages. If we want to perform operation on two ciphertexts at
different levels, we can simply add an encryption of 0 (under the appropriate ek) to
the ciphertext of lower level to “push” it up the levels.

Our homomorphic evaluation now consists of the obfuscations of multiple programs
(one for each level of encryption).

P i
dki,Ki,eki+1

(op, ct0, ct1) :

mb = Dec(dki, ctb) b ∈ {0, 1}
m = m0 op m1

r = PRF(Ki, (op, ct0, ct1))
Outputs Enc(eki+1,m; r)

However, this leveled FHE scheme still implies CRHF, and therefore is affected by the
implausibility result which suggests that we cannot build it from just iO and OWF
[AS’15]. As such, we will need to modify this program.

The last program in the sequence is P n−1
dkn−1,Kn−1,ekn

. Our goal is to change this pro-
gram so that instead of outputting the resulting ciphertext, it would always output
an encryption of 0:
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Q n−1
Kn−1,ekn

(op, ct0, ct1) :

r = PRF(Kn−1, (op, ct0, ct1))
Outputs Enc(ekn, 0; r)

Since Q n−1
Kn−1,ekn

ignores the input messages completely, it does not need dkn−1. If
we are able to change the last level of P into Q, then we will be able to work up the
chain of programs and get rid of all dki.

2.3 Indistinguishability of P and Q

In order to argue indistinguishability between P and Q, we are going to impose some
arbitrary ordering on the input of the programs: (op, ct0, ct1). If we think of the input
as a sequence of bits, then this can just be the normal ordering of the bits. We now
define a new program R which will also include

R n−1,t
dkn−1,Kn−1,ekn

(op, ct0, ct1) :

r = PRF(Kn−1, (op, ct0, ct1))
If (op, ct0, ct1) < t

Outputs Enc(ekn, 0; r)
Else

mb = Dec(dkn−1, ctb)
m = m0 op m1

Outputs Enc(ekn,m; r)

R n−1,t outputs encryption of 0 for all inputs below the threshold t, and computes
the resulting ciphertext correctly for the rest of the inputs. Notice that for t = 0
(minimum value in the ordering), then R n−1,t is equivalent to P n−1. If the thresh-
old is set at MAX, where MAX larger than any possible input values, then R n−1,t is
functionally identical to Q n−1. We want to show that:

Obf
(
R n−1,t

dkn−1,Kn−1,ekn

)
≈c Obf

(
R n−1,t+1

dkn−1,Kn−1,ekn

)
Essentially, we will show that we can move the threshold t up or down 1 at a time and
still preserve security. This will definitely change the functionality of R. However, we
are going to argue that R n−1,t and R n−1,t+1 are still indistinguishable. Notice that
R n−1,t and R n−1,t+1 differs on only one input t. On all other inputs, the two programs
are identical. We can then prove indistinguishability using a series of hybrids:

• H0: The first hybrid corresponds to R n−1,t
dkn−1,Kn−1,ekn
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• H1: Let the threshold t = (op, ct∗0, ct
∗
1) and Kn−1{t} be the punctured PRF key

at t.
r∗←PRF(Kn−1, (op, ct∗0, ct∗1))
m∗ = Dec(dkn−1, ct

∗
0) op Dec(dkn−1, ct

∗
1)

ct∗←Enc(ekn,m
∗; r∗)

We now replace R n−1,t with a new program R′ n−1,t:

R′ n−1,tdkn−1,Kn−1{t},ekn,ct∗(op, ct0, ct1) :

If (op, ct0, ct1) = t
Outputs ct∗

Else
r = PRF(Kn−1{t}, (op, ct0, ct1))
If (op, ct0, ct1) < t

Outputs Enc(ekn, 0; r)
Else

mb = Dec(dkn−1, ctb)
m = m0 op m1

Outputs Enc(ekn,m; r)

We can see that R′ n−1,t is functionally identical to R n−1,t in H0. Therefore,
by iO security, we can conclude that H0 ≈c H1.

• H2: In this hybrid, we replace r∗ with uniformly random value. We can argue
that H2 is indistinguishable from H1 using puncturable PRF security.

• H3: We now set ct∗ = Enc(ekn, 0; r∗). Indistinguishability of H3 and H2 follows
from security of the PKE scheme. r∗ is not used anywhere except in the encryp-
tion of ct∗. So in H2, we have a fresh encryption of m∗, and in H3, we have a
fresh encryption of 0. By PKE security, an adversary without the decryption
key cannot tell the difference between these two ciphertexts.

• H4: We set r∗ back to be PRF(Kn−1, (op, ct∗0, ct∗1)) and use punturable PRF security
to argue that H3 ≈c H4.

• H5: We replace R′ n−1,t with R n−1,t+1. Since the two are now functionally
identical (we replace the hardcoded value at t with encryption of 0 in H3), we
can conclude that H4 ≈c H5 by iO security.

We have now shown that:

Obf
(
R n−1,t

dkn−1,Kn−1,ekn

)
≈c Obf

(
R n−1,t+1

dkn−1,Kn−1,ekn

)
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So if we continue the chain from t = 0 to t = MAX, we will have:

P n−1 = R n−1,0 ≈c R n−1,1 ≈c ... ≈c R n−1,MAX−1 ≈c R n−1,MAX = Q n−1

So it seems that we have successfully shown that P n−1 is indistinguishable from Q n−1.
However, there is a problem in this proof. Let l be the length of the ciphertexts
produced and T be the size of the set of all t values. We have T = 2l, so the
advantage is 2lnegl(λ). However, since negl only means that the function is smaller
than any inverse polynomial, 2lnegl(λ) is not necessarily negligible. In addition, it is
not hard to show that in any secure PKE scheme, the ciphertext size must be at least
λ. Therefore, the advantage is 2λnegl(λ). Unfortunately, we do not know how to solve
this problem. The only thing we can do is to assume that the indistinguishability
between each R is very strong.

2.4 Subexponential iO

We give a new definition of iO called subexponential iO:

Definition 1 (Subexponential iO). For all functionally equivalent circuits C0, C1 and
for all PPT adversaries A, there exist a constant c ∈ (0, 1] such that

|Pr[A(Obf(C0, λ)] = 1]− Pr[A(Obf(C1, λ)] = 1]| < 1

2λc

This is a stronger definition of iO. We do not know that this is possible. However,
it turns out that for iO (and other cryptographic primitives), the best known attacks
have had this kind of probability. So it is plausible to assume that there is no kind
of attack with higher success probability.

If we use subexponentially strong iO and PRF, no attacker will be able to distin-
guish between H0 and H5 with probability better than 2l

(
5

2(λn)c

)
for level n, where

λn is the security parameter for the level. To make the value 2l
(

5
2(λn)c

)
small, we

are going to set λn >> l
1
c ≈ (λn−1)

1
c (λn−1 is the security parameter of the previous

level). We are raising the security parameter for the next level to be bigger than the
previous level. However, this means that λn is exponentially big in n, which means
that our obfuscated programs and ciphertexts have to also be exponentially big. We
can fix this problem by introducing another primitive.

2.5 Lossy Encryption

Until now, we have not use anything more than iO and OWF. As mentioned before,
FHE is unlikely to follows from just iO and OWF. Therefore, we are going to need a
new primitive called lossy encryption.
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Definition 2 (Lossy Encryption). A lossy encryption scheme consists of four algo-
rithms:

• Gen(λ)→ (dk, ek)

• Enc(ek,m)→ ct

• Dec(dk, ct)→ m

• GenLossy(λ)→ ek

There is a strong requirement that the distribution of the encryption of 0 and 1 under
ek←GenLossy(λ) must be identical. For all ek←GenLossy(λ) and ciphertext ct:

Pr[Enc(ek, 0) = ct] = Pr[Enc(ek, 1) = ct]

Clearly this cannot be the case for ek generated with dk from Gen(λ), since we will
not be able to decrypt otherwise. Basically, ek←GenLossy is a lossy key since it loses
all information about the message. For security we requires that:

ek←GenLossy(λ) ≈c ek : (ek, dk)←Gen(λ)

We can build lossy encryption from Decisional Diffie-Hellman (DDH), factoring, and
learning with errors (LWE) assumptions (though the distribution of ciphertext for 0
and 1 under lossy key are only statistically indistinguishable, not identical, in the
case of LWE).

We now go back to the proof and, before we switch from P to R, replace the en-
cryption key with a lossy key. So P n−1

dkn−1,Kn−1,ekn
will be replaced with:

P n−1,Lossy
dkn−1,Kn−1,ek

Lossy
n

:

mb = Dec(dkn−1, ctb)
m = m0 op m1

r = PRF(Kn−1, (op, ct0, ct1))
Outputs Enc(ekLossyn ,m; r)

We can make this change because P n−1 does not include the corresponding decryp-
tion key for ekn. Now we can repeat the sequence of hybrids, except that we do not
need to invoke PKE security between H2 and H3 since the encryption key has been
replaced with a lossy key, which has identical distribution for encryption of 0 and 1.
We no longer invokes security of the encryption scheme for every step of the hybrid,
only from P n−1 to P n−1,Lossy. At a high level, we have separated the dependency
between the security parameter and the input size. Let λ0 be the security parameter
of the encryption scheme. We will now set security of iO and puncturable PRF to be
λ1 >> l

1
c ≈ (λ0)

1
c .
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2.6 The Rest of the Proof

We have now proved security of P n−1. From here, we can prove the security of P n−2,
because once we have switched to Q n−1, we no longer have dkn−1. We can then repeat
the process to replace the program at each level with Q. Once we get to level 0, we
can simply prove security using PKE security.

3 From Level FHE to Full FHE

Note that we have already known how to build leveled FHE under the LWE assump-
tion before. However, we do not know how to turn this into the full FHE scheme we
wanted. In both leveled FHE constructions from LWE and iO, the number of levels are
bounded. However, it turns out that we can turn the level FHE construction from iO
into a full FHE scheme with subexponential hardness assumption. Briefly, the instead
obfuscate a program P which takes in a level n and outputs the obfuscated program
P n for that level.

P (n) :

Outputs Obf(P n
dkn−1,Kn−1,ekn

)

Here dkn−1,Kn−1, and ekn are generated by a PRF. At the end, we have a pro-
gram of fix size that we can use to generate Obf(P n) for a new level by feeding it
n.

References

[AS’15] Asharov, G. and Segev, G. Limits on the power of indistinguishability obfus-
cation and functional encryption. Proceedings of the 56th Annual IEEE Sympo-
sium on Foundations of Computer Science, 191- 209, 2015. 1, 2

[IKO’05] Ishai, Y., Kushilevitz, E., and Ostrovsky, R. Sufficient conditions for
collision-resistant hashing. Theory of Cryptography Conference, 445- 456, 2005.
1

7


	Introduction
	Construction of FHE from iO
	First Attempt
	Leveled FHE
	Indistinguishability of P and Q
	Subexponential iO
	Lossy Encryption
	The Rest of the Proof

	From Level FHE to Full FHE

