COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 6 (10/4/16)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 6

1 Last Time

Last time we saw how to use obfuscation and one way functions to build multiparty
NIKE. Today, we’ll see that multiparty NIKE implies broadcast encryption.

2 Broadcast Encryption Definition

Suppose we have a content distributor (like Netflix) and a number of users. Some
users are are registered to receive a particular broadcast, and the content distributor
wants to make one big broadcast so that only the registered users can decrypt the
broadcast.

A broadcast encryption scheme consists of the following PPT algorithms:

e Gen(N,\) — (mpk, msk)
e Extract(msk,i) — sk;
e Enc(mpk,S,m) — ¢

e Dec(mpk, sk;, S,c) = m

For correctness, if i € S, then Dec(mpk, sk;, S, Enc(mpk, S,m)) = m.

The most basic notion of security is that users outside of S cannot learn anything
about the message. It turns out that this definition of security isn’t good enough,
since it leaves open the possibility of multiple excluded users colluding to decrypt the
broadcast.

To deal with this issue, we define fully collusion resistant security, where the assump-
tion is that every user outside the broadcast will collude.

The experiment works as follows. The adversary picks the broadcast set S* C [N].
The challenger then generates (mpk, msk) <— Gen(N, \) and sends mpk to the adver-
sary. For all i ¢ S*, the challenger runs sk; < Extract(msk,?) and sends {sk;}gs-
back to the adversary. Then the adversary sends back messages mg, m; and receives
the cyphertext ¢* = Enc(mpk, S, my) and tries to guess b'.

1



This is the static security version. We can also define an adaptive security version
where the adversary can perform secret key queries before picking the set S*, but we
won’t worry about that in this class.

3 Broadcast Encryption from PKE

It turns out that public key encryption is sufficient to build a simple statically secure
broadcast encryption scheme:

e Gen(N,\). Foralli € [N], set (pk;, sk;) < Genpk (), and output (mpk, msk)

({pki}, {ski}).
e Extract(msk,i). Output sk;

e Enc(mpk,S,m). For all i € [S], compute ¢; = Enc(pk;,m), and then output
¢ ={ci}ies

The problem with this scheme is that the broadcaster is essentially sending a separate
ciphertext for each person in the broadcast, so the broadcast size is huge. Clearly,
this is undesirable for settings where the number of users is very large.

4 Broadcast Encryption from Multiparty NIKE

What we want is for the cyphertext to be about the same size as the message, re-
gardless of the number of users. Ideally, |mpk|, |msk|, |sk;|, |c| will all be polynomial
in the security parameter A, and have no dependence on N.

The scheme we’ll give today won’t quite get to these conditions. Instead, we’ll achieve
|sk|, |c| polynomial in A and |mpk|, |msk| polynomial in N, A. It is possible, however,
to achieve the ideal parameters but we won’t talk about that in this lecture.

The rough idea for this scheme will be that the users in the broadcast set S run a
multiparty NIKE protocol to decrypt the message.

e Gen(N,\) works by outputting (sv;, pv;) <— Publish(X\) for: =1,..., N. msk =
{sv;}, mpk = {pv;}.
e Extract(msk,i) = sv;.

e Enc(msk, S,m) first computes k < KeyGen({pv; };cs, sv;) and then outputs ¢ =
k& m.

o Dec(mpk, sv;, S, c) computes k < KeyGen({pv;};es, sv;) and m =k & c.

2



(Aside: The reason why we include S in the decryption input is that S takes N bits,
so if we don’t make the input size depend on the size of S, it is not possible to get
ideal parameter size for the cyphertext. It’s possible to make an argument that no
matter how you try to hide S, the cyphertext will still have to encode S somehow.)

Whoever is going to encrypt needs to be able to compute the shared key k. So we’ll
modify Enc and Dec as follows:

e Enc(msk, S, m) first generates (pvg, svg) <— Publish(\) and then computes k <+
KeyGen({pv;})i € SU{0}, svg), and then outputs ¢ = k & m, puy.

e Dec(mpk, sv;, S, (¢, pvg)) computes k <— KeyGen({pv;})i € S U {0}, sv;) and out-
puts m =k @ c.

Theorem 1. The above broadcast encryption scheme is statically secure

Proof. Let A be an adversary for the broadcast encryption scheme. We'll use A to
produce an adversary B that breaks the security of multiparty NIKE.

A sends S* C [N] to B. B defines [ = |S*|. B receives from his challenger
{pvi}izo1..1, K, where K is either the shared key for these users or is uniformly ran-
domly generated. He keeps the first public value pvy for himself. Let S* = {i1, ..., i}
B assigns pv;; = pv;. For users outside of S*, B generates their public and secret
values. He then sends mpk = {pv;} to A. He also generates secret values for users
outside of S*, so he sends {sv;}igs+ to A as well. Then A sends back mg, my and B
randomly chooses b <— {0, 1} and then sends back k @ my, pvg. Then A sends back b’
and B outputs b b,

If k is the actual shared key, then the view of A is exactly what A would expect,
where the cyphertext does actually encrypt my. The probability that B outputs 0 is
% + € where € is A’s advantage.

If k£ is random, then the probability that B outputs 0 is identically 1/2. By the
security of multiparty NIKE, these two probabilities need to be negligibly close, so
A’s advantage € is negligible. m

5 Broadcast Encryption from iO / diO

Here we sketch what happens if we instantiate the protocol using the NIKE protocol
from last lecture, obtaining a broadcast scheme from indistinguishability obfuscation.
We just write out Gen and Extract:

e Gen(N, \) outputs s; < {0, 1}*, z; « PRG(s;) and P= iO(P), where P(y1,...,YN+1,1, S;)

works as follows. It first checks PRG(s;) = i, and if not, it aborts. If the check
passes, it outputs PRF(k, (y1,...,yn)). So mpk = ({z;}, P) and msk = {s;}.

3



e Extract(msk,i) = s;.

Now, this protocol has large public keys. The issue is two-fold: first, the set of {z;}
necessarily grows with the number of users. Second, P takes as input a sequence of
values which is potentially as large as the number of users.

Here, we will discuss one approach to the issue of large P. We can think of the obfus-
cated program as acting on three inputs: vg,?, 7. Here, vg is some value dependent
on S. 7 is the user number, and 7 is a “proof” that user ¢ has “access” to vg. We want
to set things up so that only users ¢ € S can construct valid proofs. The program
checks that 7 is a valid proof that ¢ has “access” to vg. If not, it aborts, but otherwise
it outputs PRF}(vs). We want to shrink vg so it doesn’t grow with the number of
users. Namely, |vg| << |S|.

We can set vg = H(S) where H is a hash function. Interpret S as being a bit string
where each bit says whether that user is in S.

Since H is compressing (its output is much smaller than its input), there are guar-
anteed to be many collisions. Consider two S,S’ that hash to the same value:
vg = H(S) = H(S") = vg. Suppose I broadcast to the set S. Let i € 5"\ S.
We need that ¢ cannot produce a valid proof that ¢ has access to vg. But at the same
time, we need that i can produce a valid proof that ¢ has access to vg,. But since
vg = vg, we apparently have a contradiction.

Fortunately, sets S, S’ that hash to the same value are hard to find if we assume H
is collision resistant. This means that user ¢ should not be able to compute the set
S’ that collides with S, and therefore should not be able to compute a valid proof
that it has access to vs,. However, the collision resistance of H is insufficient for
actually proving security with iO. The reason is that, while i ¢ S should not be able
to compute a valid proof, these valid proofs are guaranteed to exist. They are just
hard to find. Yet for iO, we need that valid proofs for users outside of S do not exist
at all.

This motivates the definition of Differing Inputs Obfuscation (diO), which is stronger
than indistinguishability obfuscation. For iO, if two equal-length programs are the
same on all inputs, then their obfuscations are indistinguishable. In diO, we say that
if two equal-length programs are such that we cannot find inputs where the programs
differ, then the obfuscations are indistinguishable.

Consider (Cy, Cy, auz) < Samp(). We say that Samp() is a differing inputs sampler
if V PPT algorithms A,

Pr[A(Cy, Cy, aux) = x s.t. Cy(z) # Cy(z) where (Cp, Cy, auzx) < Samp()] < negl.
In other words, a differing inputs sampler gives a distribution on pairs of circuits

Cp, C7 and auxiliary information such that given this input, no PPT algorithm can
find a point where the circuits differ (with non-negligible probability).

4



diO is a differing inputs obfuscator if for all differing inputs samplers Samp, and for
all adversaries B,

|Pr[B(diO(Cy), Cy, Ch, auzx) = 1] — Pr[B(diO(CY), Cy, Cy, auz) = 1]| < negl

Where (Cy, Cy, auzx) < Samp.

We do not have a proof one way or another that diO exists. However, there are some
arguments that diO is unlikely to exist, at least in its most general form as outlined
above. However, diO is known to exist for very restricted families of differing inputs
samplers.

Even assuming diO, shrinking the public key size as above is non-trivial. The reason
is that coming up with a proof 7 that is short is problematic. Indeed, the simple
proof would be to just supply the set S, but this defeats the whole purpose. Instead,
the proof must be much shorter than |S|. Surprisingly, using a special type of hash
function called Merkle Trees, this is possible. Merkle trees can be built from any
collision resistant hash function.

More recent constructions of broadcast encryption have shown how to remove diO,
so we only need 10O, as well as removing the need for collision resistance. That is, now
we have broadcast encryption where all parameters are independent of N form just
iO and one-way functions.



	Last Time
	Broadcast Encryption Definition
	Broadcast Encryption from PKE
	Broadcast Encryption from Multiparty NIKE
	Broadcast Encryption from iO / diO

