
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 5 (9/29/16)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 5

1 Last Time

Last time, we saw that we can get public key encryption (PKE) from indistinguisha-
bility obfuscation (iO) and one way functions (OWF). At the end, we looked at
multiparty non-interactive key exchange (NIKE). Today, we’ll continue looking at
multiparty NIKE.

2 Non-interactive vs. Interactive Key Exchange

We first consider the two person case. In this setting, Alice and Bob have a channel
through which they can communicate over many rounds. The goal is for Alice and
Bob to agree on a shared key k that an eavesdropper (who can see every round of
communication) is unable to deduce anything about.

We can solve this using public key encryption, as follows. Alice generates (ek, dk)←
Gen() and then sends ek to Bob. Bob picks a random key k ← {0, 1}λ and sends back
c← Enc(ek, k). So Bob has k and Alice can learn k by just decrypting k = Dec(dk, c).

In 2-party NIKE, Alice and Bob both post to a public bulletin board at the same
time and establish a shared key k. It’s non-interactive because they don’t wait to see
each other’s messages.

Why is non-interactive key exchange particularly interesting?

1. It is interesting to see if we can compress communication to just a single, non-
interactive round.

2. The messages/public values can be reused. The fact that this procedure is non-
interactive means that Alice and Bob can post their public values to establish a
shared key, and later, if Charlie wants to establish a shared key with just Bob,
Bob doesn’t have to post any new messages. Charlie just runs his half of the
protocol, and posts his public value. Then Bob can compute the shared key
kBC right away.

Re-use of messages means we can use less communication overall. Suppose we have
N users and each pair of users wants to establish a shared key. This just takes N

1



messages in the non-interactive setting, but requires Ω(N2) messages in the interactive
setting.

3 History

Before we move onto a construction of multiparty NIKE, we’ll briefly survey the
history of this problem.

In 1976, Diffie and Hellman came up with a 2-party NIKE scheme using a computa-
tional problem involving finite fields [DH76].

In the 1990’s, people realized this could be extended to elliptic curves, which gives
certain advantages that we won’t discuss in this class.

In the 1990’s and 2000’s, people came up with an extension to lattices.

In 2004, Joux came up with 3 party NIKE using pairings on elliptic curves [Jou04].

In 2012, Garg, Gentry, and Helevi came up with an N -party scheme using multilinear
maps [GGH13]. It turns out this scheme is broken.

4 Multiparty NIKE from iO

We define a multiparty NIKE scheme to consist of the following PPT algorithms

• Setup(λ,N)→ params

• Publish(params, i)→ (svi, pvi)

• KeyGen(params, {pvi}i=1,...,N , svj)→ k

Here we’re allowing a trusted setup to occur first. Think of this as Facebook pub-
lishing parameters to a public bulletin board, and then the Facebook users running
a multiparty NIKE scheme afterwards. It’s still non-interactive, but there is an ad-
ditional step in the beginning.

Correctness is straightforward; for all j, everyone gets the same key.

The scheme is secure if no polynomial time adversary can distinguish between the
following two cases.

• Case 1. The adversary receives k, params, {pvi}i=1,...,N where params← Setup(λ,N),
∀i (pvi, svi)← Publish(params, i), and key k ← KeyGen(params, {pvi}i=1,...,N , sv1).

2



• Case 2. The adversary receives R, params, {pvi}i=1,...,N . This is generated the
same way as it was in case 1, except R is a totally random string R← {0, 1}λ.
params← Gen(λ).

We first give a broken protocol to build intuition. We consider the situation where
all users have access to some black box F . We claim that for each user, their public
value should be the result of a one way function applied to their secret value. If this
isn’t the case for some user, then the adversary can potentially learn things about
this user’s secret value.

The (broken) protocol works as follows. Say the users are A,B,C. Everybody posts
their public value. F has the secret key kPRF for some PRF in its head. F just
returns PRF (kPRF , (pvA, pvB, pvC)), and the users agree on this as the shared key.

Obviously this doesn’t work since this key relies solely on public information. The
adversary could just submit pvA, pvB, pvC to the black box and know the shared key.
So to make the scheme work, we modify the black box to only give back the key if
the user has supplied their secret value first.

We start by defining Setup(λ,N) to work as follows. First, sample a totally random
key kPRF ← {0, 1}λ. Define the program PkPRF ,λ,N(pv1, . . . , pvN , i, svi) to have the
following behavior.

Check if pvi = OWF (svi).
If not, abort and output ⊥.
If so, set k ← PRF (kPRF , (pv1, . . . , pvN) and output k.

Setup(λ,N) will output params where params← iO(PkPRF ,λ,N).

If we had black box obfuscation, this would be good enough. But to make a proof
of security work with just iO, we need to make a few changes. We turn the one way
function into a PRG, and the PRF into a puncturable PRF. The PRG will be length
doubling: {0, 1}λ → {0, 1}2λ. So the working protocol we give is:

• Setup(λ,N) samples a totally random kPRF ← {0, 1}λ, and outputs iO(PkPRF ,λ,N),
where PkPRF ,λ,N is as defined above (with the given modifications).

• Publish(P̂ ) sets sv ← {0, 1}λ, pv ← PRG(sv), and then outputs pv, sv.

• KeyGen(P̂ , {pvi}i=1,...,N , i, svi) outputs P̂ ({pvi}, i, svi).

Theorem 1. The above protocol is secure.

Proof. We use a series of hybrids to prove security. Hybrid 0 will correspond to the
first case of the security experiment, and Hybrid 5 will correspond to the second case.

3



In Hybrid 0, the adversary gets a properly generated key k ← PRF (kPRF , {pvi})
and params, {pvi}. Here pvi = PRG(svi). The bar in pv, sv is simply to distinguish
these original values.

Hybrid 1 is the same as Hybrid 0, except we change the public values to be truly
random, so ∀i pvi ← {0, 1}2λ. Security of the PRG allows us to replace all the public
values with truly random values.

Hybrid 2 is the same as Hybrid 1, except now we set params = iO(P ′), where
P ′
z,k{z}PRF,λ,N(pv1, . . . , pvN , i, svi) has the following behavior (for shorthand, we are

now setting z = {pvi}).

Check that pvi = PRG(svi).
Check that z 6= {pvi}.
If either check fails, output ⊥.
Otherwise, set k ← PRF (kPRF{z}, pv1, . . . , pvN), and output k.

To get from P to P ′, we changed the PRF to a punctured PRF, and we added a new
line to check if z 6= {pvi}.
We claim this hasn’t changed the function. For the second check to fail in a case
where the first check wouldn’t already fail, the input must be pv1, . . . , pvN , i, svi
where PRG(svi) = pvi. This last equality is overwhelmingly unlikely to be satisfied,
since pvi is randomly drawn from a set 22λ and svi is drawn from a set of size 2λ.

Since these programs are equivalent w.h.p., iO tells us that this is indistinguishable
from Hybrid 1.

Hybrid 3 is the same as Hybrid 2, except we set k to be a randomly drawn value
k ← {0, 1}λ. In Hybrid 2, k was the value of a punctured PRF at the punctured
point. Now we’re changing it to be totally random, which by punctured security is
impossible to distinguish. So this is indistinguishable from Hybrid 2.

In each of the remaining hybrids, we undo the changes above by applying the same
arguments.

In Hybrid 4, we set params = iO(PkPRF ,λ,N).

In Hybrid 5, we set pvi = PRG(svi). We are back to where we started, but now there
is true randomness in the key.

We can modify this protocol to get rid of Setup, which is undesirable since the au-
thority can learn k.

What if Alice just generates the parameters? Alice can publish P̂ along with pvA.
Alice can do this since none of the users need to see P̂ in order to generate their own
public values.

4



This protocol has some weaknesses. Multiparty NIKE was motivated by reusability
of messages, but here if David wants to join and compute a shared key with a set
of users not including Alice, they can’t use the same P̂ . The proper way to do it
is that each person submits their own P̂ and the users can use the lexicographically
first program.

Another issue is that once Alice publishes her program, it won’t allow more than N
users.

5 Stronger Security Models for NIKE

The original model we proved security in assumes that the users establish a key in a
vacuum. But the whole point of multiparty NIKE is that there is reusability. So the
model should take this into consideration.

Let’s suppose an adversary joins the protocol. Moreover, let’s say that the adversary
obfuscates the following program (instead of the intended program)

P (pv1, . . . , pvN , i, svi) = svi.

After running the protocol, Bob (for example) will think his secret value is the shared
group key. The adversary will get messages from Bob where he encrypts with his
secret key, and can potentially learn Bob’s secret value. Then the adversary can use
this to learn other shared keys in the future.

There are stronger security models that capture this use case. The strongest is adap-
tive security, but we only do not yet know how to achieve this from just iO and
OWF.

References

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, Nov 1976. 2

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps
from Ideal Lattices, pages 1–17. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013. 2

[Jou04] Antoine Joux. A one round protocol for tripartite diffie–hellman. Journal
of Cryptology, 17(4):263–276, 2004. 2

5


	Last Time
	Non-interactive vs. Interactive Key Exchange
	History
	Multiparty NIKE from iO
	Stronger Security Models for NIKE

