
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 4 (09/27/16)
Lecturer: Mark Zhandry Scribe: Jordan Tran

Notes for Lecture 4

1 Last Time

Last time, we started to see some application of indistinguishability obfuscation (iO).
In particular, we saw that iO and puncturable pseudo random function (PRF) give us
signature. However, we did not learn where puncturable PRF comes from. Basically,
we can show that one-way function (OWF) is sufficient to build puncturable PRF.
Therefore, we can instead say that OWF and iO give us signature. There is a cel-
ebrated result [HILL’99] which showed that OWF implies pseudo random generator
(PRG). Today, we are going to show that PRG implies puncturable PRF.

2 Construction of Puncturable PRF

2.1 What is a PRG?

A pseudo random generator (PRG) is a way to stretch out a small source of random
bits to a large amount of random looking bits. For our application, we are going to
refer to the PRG G : {0, 1}λ → {0, 1}2λ. However, not all PRGs need to be length-
doubling. Security requires that the distribution of G(s) (for s← {0, 1}λ) should be
computationally indistinguishable from r sampled uniformly random from {0, 1}2λ.

2.2 PRF Construction from PRG

We can construct a normal PRF from a length-doubling PRG G : {0, 1}λ → {0, 1}2λ
[GGM’86]. Given an output G(s), we are going to divide it into two halves G0(s) and
G1(s). First, we define the PRF for a single bit as:

PRF(s, b) = Gb(s) b ∈ {0, 1}

Then we can recursively define the PRF as:

PRF(s, x||b) = Gb(PRF(s, x)) b ∈ {0, 1}

1

G

G0

G00

G000 G001

G01

G010 G011

G1

G10

G100 G101

G11

G110 G111

Figure 1: Sample GGM PRF tree with 3 levels

We can observe that the GGM construction of PRF forms a tree (see Figure 1). For
n-bit input, we will have n levels of the tree. The leaves of the tree correspond to
the output of the PRF. Note that if the input has size λ, the tree is exponentially
big. Therefore, we cannot compute the entire tree. However, we can still efficiently
compute each particular input to the PRF.

2.3 How to Puncture PRF

Recall that the punctured key for a puncturable PRF allows us to evaluate the PRF
tree everywhere but a single point x. Let Px be the path from root to the leaf x
where we want to puncture, and let Nx be the set of neighbors to the nodes in Px (see
Figure 2). Let K be the PRF key. We can set the punctured key on x, K{x}, as the
set of values of all the nodes in Nx.

K{x} = {PRF(K, y) | y ∈ Nx}

Note that the values we are giving out with K{x} are all the neighbors to the path
to x. This is sufficient to compute the PRF for any value other than x, since we can
expand the tree below the neighboring nodes by applying the PRG to the values of
the nodes. K{x} can be computed efficiently by keeping all the neighboring values
when we compute PRF(x).

2.4 Security of Construction

For security, we need to argue that given the values of all the neighbors, an adversary
still cannot distinguish between the value at the punctured point and a truly random
r.

By PRG security, an adversary cannot distinguish between output of the PRG and a
truly random value s. We have PRG values at every node in the tree, so we can replace

2

root

Px

Nx Px

Px

x Nx

Nx

Nx

Figure 2: Px and Nx values for given leaf x in the tree

these values with uniformly random s0 and s1 from {0, 1}λ. We can then output s1
as part of the K{x} and use s0 to compute x. With s0 as a truly random value, we
can apply PRG security again to replace the children nodes with random values s00
and s01. Repeat this process until we arrive at the leaves of the tree. Now we have
replaced all the nodes of the tree with truly random values that are independent of
each other. Since the value for x is now independent of the rest of the tree, K{x}
does not give the adversary any information about x.

3 Public Key Encryption from iO

3.1 Definition

A public key encryption (PKE) scheme consists of three algorithms:

• Gen(λ) takes security parameter λ as input and outputs a pair of keys (ek, dk),
where ek is the public encryption key and dk is the corresponding private de-
cryption key.

• Enc(ek,m) is a randomized algorithm that takes the encryption key ek and a
message m and outputs a ciphertext C.

• Dec(dk, C) takes the decryption key dk and a ciphertext C and outputs a mes-
sage m.

For correctness, we require that:

Dec(dk,Enc(ek,m)) = m (ek, dk)← Gen(λ)

3

3.2 Semantic Security

The security of a PKE scheme is defined as a game between an adversary and a
challenger:

1. The challenger generates (ek, dk)← Gen(λ).

2. The challenger sends ek to the adversary.

3. The adversary sends two messages m0 and m1 to the challenger.

4. The challenger chooses a random bit b and send Encrypt(ek,mb) to the adversary

5. The adversary outputs guess b′

Let Wb be the event that the adversary outputs 1 when the challenger has the bit b.
A PKE scheme is secured if for all PPT adversaries, there exists negligible function
negl such that:

|Pr[W0]− Pr[W1]| ≤ negl(λ)

3.3 Construction from iO and OWF

We can construct a PKE scheme with OWF and iO as follows:

• Gen(λ):
Generate a random key K ← {0, 1}λ. Set K as the puncturable PRF key.
Contruct program PK(s) which has the PRF key K hardcoded.

PK(s):
r ← PRG(s)
y ← PRF(K, r)
Outputs (r, y)

Set dk = K and ek = Obf(PK) where Obf(PK) is an obfuscation of PK.
Output (ek, dk)

• Enc(Obf(PK),m):
Generate a random s← {0, 1}λ
(r, y)← Obf(PK)(s)
Output (r, y ⊕m)

• Dec(K, (r, c)): Output m = c⊕ PRF(K, r)

4

3.4 Proof of Security

We can prove the security of our construction using a sequence of hybrid experiments,
where the changes between two hybrids depend on the security of one of the primi-
tives (PRG, iO, and puncturable PRF).

Let the challenge ciphertext given to the adversary be (r∗, c∗). The series of hybrids
is defined as follows:

• H0: This hybrid corresponds to the security game between the challenger and
adversary where the bit b chosen by the challenger is 0.

r∗ = PRG(s) s← {0, 1}λ
y∗ = PRF(K, r∗)
c∗ = y∗ ⊕m0

• H1: This hybrid is similar to H0 except we sample r∗ uniformly randomly from
{0, 1}λ instead of using the PRG.

• H2: In this hybrid, we replace the encryption key in H1 with Obf(P′r∗,K{r∗})
(obfuscation of program P′r∗,K{r∗}) where P′r∗,K{r∗} is defined as follows for hard-
coded r∗ and punctured PRF key K{r∗}:

P′r∗,K{r∗}(s) :
r ← PRG(s)
If r = r∗

Abort and output ⊥
Else
y ← PRF(K{r∗}, r)
Output (r, y)

• H3: Replace y∗ in H2 with uniformly random value from {0, 1}λ

• H4: Set c∗ = y∗ ⊕m1

• H5: Replace uniformly random y∗ in H4 with y∗ ← PRF(K, r∗)

• H6: Set the encryption key back to Obf(PK)

• H7: Replace uniformly random r∗ with r∗ ← PRG(s)

Note that H0 corresponds to the honest security game where the challenger encrypts
m0, and H7 corresponds to the security game where the challenger encrypts m1. We
now prove that each two consecutive hybrids are indistinguishable from each other.

• H0 and H1: If an adversary A can distinguish between H0 and H1, then A can
be used to distinguish PRG(s) and uniformly random r ← {0, 1}λ and break
PRG security.

5

• H1 and H2: In hybrid H2, we replace Obf(PK) with Obf(P′r∗,K{r∗}). Note that
in both H1 and H2, r

∗ is chosen uniformly random from {0, 1}λ. However,
the PRG has a much smaller domain and range than {0, 1}λ. Therefore, the
probability that a uniformly random r∗ ← {0, 1}λ has a pre-image under the
PRG is exponentially small, so with high probability PK and P′r∗,K{r∗} have the
same functionality. We can then apply iO security to conclude that Obf(PK) ≈c
Obf(P′r∗,K{r∗}), and therefore H1 ≈c H2.

• H2 and H3: Suppose we have adversary A which can distinguish between H2

and H3 with non-negligible advantage. We can then construct an adversary B
on the puncturable PRF using A as a subroutine:

1. B generates random r∗ ← {0, 1}λ and send to the puncturable PRF
challenger.

2. B receives punctured key K{r∗} and y∗ from puncturable PRF challenger.

3. B constructs P′r∗,K{r∗} and sends Obf(P′r∗,K{r∗}) as ek to A.

4. B receives challenge messages m0, m1 from A and send back (r∗, y∗ ⊕m0)
as the challenge ciphertext.

5. B outputs guess b′ received from A

If B receives y∗ = PRF(K, r∗) from the PRF challenger, the view of A is iden-
tical to H2. If B receives truly random y∗, then A’s view corresponds to H3.
Therefore, if A distinguish between H2 and H3, then B can break punturable
PRF security.

• H3 and H4: Since y∗ is uniformly random, y∗ ⊕ m for any message m is also
uniformly random. Therefore, the distribution of y∗ ⊕ m0 and y∗ ⊕ m1 are
identical.

• H4 and H5: Using puncturable PRF security, we can argue that H4 and H5 are
also indistinguishable (see H2 ≈c H3 proof).

• H5 and H6: Indistinguishability between H5 and H6 follows from indistinguisha-
bility Obf(P′r∗,K{r∗}) and Obf(PK) by iO security (see H1 ≈c H2 proof).

• H6 and H7: Finally, we can argue that H6 and H7 are indistinguishable by PRG
security (see H0 ≈c H1 proof).

Since consecutive hybrids are all indistinguishable from each other, H0 is indistin-
guishable from H7. H0 and H7 correspond to the PKE security game where the
challenge coin b is 0 and 1 respectively. Therefore, no PPT adversary can distinguish
between encryption of m0 and encryption of m1.

6

We glossed over the fact that in order to use iO, the two programs need to be of
the same size. In the proof, we invoked iO on PK and P′r∗,K{r∗}. While we proved
that they are equivalent, they are not really of the same size. However, this is not a
problem for this application, since we can pad the programs to be the same size. Let
S = max(|PK|, |P′r∗,K{r∗}|) (S is efficiently computable since |r∗| is fixed). Before we
obfuscate the programs in the hybrids, we can pad them to size S.

4 Multi-Party Non-Interactive Key Exchange

Non-interactive key exchange (NIKE) is a method for multiple parties to, through the
minimum amount of interaction, establish a shared secret key, even with the presence
of an adversary in the communication channel.

Suppose we have a public bulletin board and parties and parties A, B, C, and D.
Each party is going to compute a secret value sv and a public value pv. All parties
then publish their public values {pkA, pkB, pkC, pkD} to the board. A can now com-
pute shared key K using (pkB, pkC, pkD, skA). B and other parties should also be able
to compute the same key K from (pkA, pkC, pkD, skB) (or the equivalent tuples for C
and D). Meanwhile, an adversary who see only {pkA, pkB, pkC, pkD} should not be
able to find K.

The problem is difficult in that all parties compute their values independently, yet
they are still able to establish a common key K. In a weaker variant of the scheme
with trusted setup, we have a trusted third party who, prior to everything else, pub-
lish the public parameter params. All parties can then independently compute their
values using params.

For two parties, we can use the Diffie-Hellman key exchange scheme [DH’76]. Us-
ing bilinear maps, we can expand the key exchange to three parties. In the next
lecture, we will how to obtain NIKE for more than three parties with no trusted
setup.

References

[DH’76] W. Diffie and M. Hellman. New directions in cryptography. IEEE transac-
tions on Information Theory, 22(6):644- 654, 1976. 7

[GGM’86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792- 807, 1986. 1

7

[HILL’99] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom gener-
ator from any one-way funtion. SIAM Journal on Computing, 28(4):1364- 1396,
1999. 1

8

	Last Time
	Construction of Puncturable PRF
	What is a PRG?
	PRF Construction from PRG
	How to Puncture PRF
	Security of Construction

	Public Key Encryption from iO
	Definition
	Semantic Security
	Construction from iO and OWF
	Proof of Security

	Multi-Party Non-Interactive Key Exchange

