
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 22 (12/8/16)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 22

1 Difficulties in Building iO

Today we’ll talk about difficulties in building iO. We’ll also discuss difficulties /
impossibilities in other obfuscation definitions.

First we’ll argue that iO is not really one assumption, but rather a bunch of assump-
tions. Remember what iO says: ∀C0 ≡ C1, we have iO(C0) ≈c iO(C1).

Normal assumptions in cryptography say things of the form: one distribution is com-
putationally indistinguishable from another distribution. iO has an assumption of
this form, but for any pair of circuits. It seems like we could imagine this assumption
holding true for some pair of circuits but not others.

To see that this is really a difference, think about how we would gain confidence
in a PRG-type assumption. We could try extensive cryptanalysis. We could post
challenges online.

We can’t gain confidence in the iO assumption in this fashion, since we would have
to post challenges for exponentially many pairs of C0, C1.

The goal is then to base iO ∀C0 ≡ C1 on some simple assumption.

Ideally we’ll have some reduction that gets some sample s from either Dist1 or Dist2.
It’s additionally going to get C0, C1, and then it outputs Ĉ. If s ← Dist0, then
Ĉ = iO(C0), and if s ← Dist1, then Ĉ = iO(C1). So this reduces the problem to
assuming that Dist0 ≈c Dist1.

So if some adversary A can distinguish between C0 and C1, then we have something
that can break our simple assumption Dist0 ≈c Dist1.

Unfortunately, this is not going to work.

Consider two cases. C0 ≡ C1 means that there is no adversary A that will work. On
the flip side, let’s say that we are fed C0 6≡ C1. Then there does exist an A, since
there is a point where they are not equivalent, and A will just check that point. The
intuition here is that the reduction must decide circuit equivalence, since in one case
it must produce a good obfuscation and in another case it does not (but actually
testing this is not obvious so this doesn’t constitute a full proof).

The way out of this issue is to allow the reduction to run in time 2n, where n is the
input length of the circuit. Then the reduction is allowed to verify circuit equivalence.
For this, we need that Dist0 ≈C Dist1 even for 2n-time adversaries.

1



Examples: There is iO from subexponentially secure FE from assumptions on MMaps.
There is also iO from subexponential DDH on 5-linear maps.

2 Point Obfuscation

Point obfuscation is obfuscation restricted to the set of programs that are point
functions. The types of programs are Ixy(x

′) which is y if x = x′ and 0 elsewhere.
Recall that we saw these point functions in the first/second lecture for the Barak
impossibility result.

These are useful for password hashing. You obfuscate the point function where the
secret input is the password.

Auxiliary Input Point Obfuscation (AIPO). Here we’ll consider distributions (x, y, aux)←
Dist. We’ll say that Dist is computationally unpredictable if, given the auxiliary
information produced by the distribution, it’s still hard to find x. O is an auxil-
iary input point obfuscator if, for all computationally unpredictable distributions,
(O(Ixy), aux) ≈c (O(Ixy′), aux) where y′ is random and x, y, aux is drawn from the
distribution.

We’ll show under a reasonable assumption (namely that iO exists), that this definition
is unsustainable.

Consider the following distribution. We draw x at random, y at random, and then
aux is iO(Dxy) where Dxy(C) does the following. It outputs 1 if C(x) = y, and 0 else.

If we just had VBB obfuscation, the value of x and y should be hidden, because for
any circuit C ′ we feed in, C ′(x) 6= y if y is drawn from a large enough distribution.
So this distribution should be computationally unpredictable. For AIPO to hold, we
need (O(Ixy), aux) ≈C (O(Ixy′), aux where y′ is random. Clearly this won’t be the
case. In the first case aux(O(Ixy)) = 1, and in the other case aux(O(Ixy′)) = 0.

To actually make this proof work with iO, we’ll have to say aux = iO(Dxz) where
z = G(y) and G is some PRG. Dxz(C) works by outputting 1 if G(C(x)) = z, and 0
else.

By PRG security, we know that Dx,G(y) ≈c Dx,z′ for random z′, But with high prob-
ability Dx,z′ ≡ all 0’s program since there likely won’t be a preimage of z′. So by iO
we have iO(Dx,G(y)) ≈c iO(all 0′s)

So in particular this means that given the auxiliary information, you don’t learn
anything about x and y. So this distribution is computationally unpredictable. The
rest of the argument is the same.

2



3 Differing Inputs Obfuscation

We have a distribution that produces (C0, C1, aux) ← Dist. Dist is differing inputs
if for all differing inputs distributions, diO(C0), aux ≈ diO(C1), aux. We need at a
minimum that given the auxiliary information, it is hard to compute a point where
the two circuits differ.

Dist is differing inputs if given C0, C1, aux, it’s hard to find x such that C0(x) 6= C1(x).

We want to concoct a distribution that is differing inputs, but for which we can easily
tell apart the obfuscations of the two programs.

Suppose we have some signature scheme. For b = 0, 1, let Cb = Cvk,b. Cvk,b(x, σ) is b
if V er(vk, x, σ) accepts and 0 else. So if the signature σ is valid for a message x, it
outputs b and otherwise it outputs 0.

We’ll set Dsk(C) = C(x, σ). x is going to be some hash H(C) of a circuit C. Then σ
is Sign(sk, x). So the distribution will be (C0, C1, Obf(Dsk)).

We can tell apart the obfuscations of C0 and C1 by simply feeding them into the
auxiliary obfuscated program, since C0 will lead the program to reject (since C0 will
always reject) and C1 will lead the program to accept (since it will be fed a valid
signature of its hash).

It remains to decide that given Obf(Dsk) if we can we find a differing input for C0

and C1. If this obfuscator were actually VBB obfuscation, we would be good. Since
we don’t have VBB obfuscation, we get impossibility if there exists a “special purpose
obfuscator”; if there exists some signature scheme and obfuscation scheme such that
given an obfuscation of this circuit containing the signing key, it is hard to produce
a signature.

By tweaking this counterexample, we can get an impossibility result for Turing ma-
chines, where we no longer have to compute H(C) and can use the code of C directly.

In public coin diO, we only consider Dist where aux is random coins. So in this case
we say that they are differing inputs even if the coins flipped are public. Clearly what
we did above is not public coins diO since if we have the random coins then we can
undo the signature scheme. It turns out that we can build iO for Turing Machines
from public coin diO.

3


	Difficulties in Building iO
	Point Obfuscation
	Differing Inputs Obfuscation

