
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 21 (12/6/16)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 21

1 Overview

Today we’ll talk about the difficulty of building obfuscation from other tools.

We’ll have some idealized random model like the random oracle model or a random
permutation oracle or constant degree multilinear maps.

We’ll try to get a black box construction of iO from that object, and then we’ll use
that to get iO without that object. We’ll also construct approximately correct iO.
We can also build approximately correct, approximately secure PKE.

It turns out that with constant degree multilinear maps, you can construct iO, but
it isn’t done in a black box way. Generally, non-black box constructions are not as
efficient. So black box impossibility results can be interpreted as it being difficult to
construct something.

We also know that statistically secure approximate iO is impossible unless OWFs
don’t exist or PH collapses.

2 The Random Oracle Model

We’ll have our iO scheme take as input some circuit C and then make queries to a
random oracle in the sky. iOO outputs some obfuscated circuit ĈO that can make
oracle queries.

We construct another obfuscation scheme iO′ that takes as input C. Note that this
scheme won’t explicitly output a program, but rather a string that can be fed into
a separate Eval program that will be used for evaluation. In its head, it’s going to
concoct a random oracle. But instead of actually writing down the oracle, it’s going to
come up with its oracle query answers on the fly. Then it records its given answer to
make sure it’s consistent with future queries. It runs the original obfuscator C → iOO,
and we just simulate O to handle oracle queries. Now we pick some polynomial-size
parameter t that is sufficiently large. For x = 1, . . . , t, it samples a random xi from
the domain of C. It runs ĈO(xi) and sets Li = {(ri, si)} to be the query response set
generated during this computation. Let L = ∪Li, and finally output (Ĉ, L).

1



Let’s see why this gives indistinguishability. Suppose C0 ≡ C1 and there is a PPT
adversary A that distinguishes (Ĉ0, L0) from (Ĉ1, L1). We can use this to come up
with a PPT BO that breaks security of our original obfuscator, iOO.

BO(Ĉ) simply does the following. For i = 1, . . . , T , it chooses a random xi in the
domain of Ĉ, and then runs ĈO(xi) and sets Li = {(ri, si)}. Let L = ∪iLi. It outputs
A(Ĉ, L) and breaks the security of the original obfuscator.

Evaluation is done as follows. Eval(Ĉ, L, x) runs Ĉ(x). On query r, if (r, s) ∈ L, we
respond with s (in this case we’re lucky). Otherwise, we answer randomly.

Assume Ĉ(x) makes unique queries (if we make a query a second time, we don’t need
to query again).

We can prove that this construction is a p approximately correct iO scheme. This
just means that Pr[iO(C)(x) = C(x)] ≥ 1− p for x← domain(C).

We prove correctness as follows. Consider running Ĉ(x) on a random x from the
domain of C. Let Q be the set of queries made during obfuscation. We’ll look at
a query r in two possible cases. First, the easy case is to suppose r 6∈ Q. Let O
be a random oracle consistent with Q. In our (the simulator’s) view, O is actually
drawn from this distribution. So O(r) is just random, which corresponds to how
the evaluation algorithm answers. The harder case is when r ∈ Q. Let q be the
probability that r is queried by Ĉ(x) on a random x. If q is tiny (much smaller than
t), then it doesn’t matter if I don’t have the answer, since with high probability I will
be fine. If q is large, then there is a good enough probability that I picked it during
the simulation phase of iO′, so long as we set t large enough.

3 Constant Degree Multilinear Map Case

Now suppose we have an iO scheme that queries a multilinear map M . This obfuscator
places random values αi in M . It obfuscates a circuit C and produces Ĉ that can
query M on degree d polynomials P , to which M responds with whether or not
P (αi) = 0.

We can hope to apply the same strategy that we used in the random oracle case, but
the problem is that now there is more structure. We’ll start with that idea first. The
construction is initially the same if we replace the O’s with M ’s. The one thing we
change is that we keep all the Pj such that Pj(α) = 0. Let L consist of the union of

all the Pj’s saved during the obfuscation. We output (Ĉ, L).

Security (indistinguishability) goes through in the same way as it did before.

Evaluation must be different, however, since we note the following example: if we
query on the sum of two zero polynomials, it should be zero, but this sum polynomial
likely won’t have been stored from before.

2



We’ll think of the vector space V of all degree d polynomials. The set of all polynomi-
als W that evaluate to 0 will be a subspace. So to answer a query, we check whether or
not the query lies in this subspace. Let W ′ be the space spanned by the polynomials
in L. Given any other polynomial, we test if p ∈ W ′. We claim that the dimension
of W is polynomial. This is because we have constant degree d polynomials.

The problem case occurs when we evaluate on a random input in W but not in W ′,
but if this happens with high enough probability, then W ′ would have had a higher
dimension.

Note that this strongly relies on d being constant, since if it were allowed to grow all
these arguments about parameters being polynomial would fail.

There are some limits of black box separations. O(1) degree multilinear maps can be
used to construct Compact Functional Encryption in a black box way. This is just
functional encryption where the cyphertexts aren’t too large. This is not trivial at
all. We can use this to get iO in a not black box way.

3


	Overview
	The Random Oracle Model
	Constant Degree Multilinear Map Case
	Limits of Black Box Separations.

