
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 2 (September 20, 2016)
Lecturer: Mark Zhandry Scribe: Mark Zhandry

Notes for Lecture 2

Recap of last time

Last time, we started defining obfuscation. For Turing Machines, recall that we
assume the machine outputs its running time in addition to whatever output it is
supposed to produce.

Definition 1. An obfuscator is a probabilistic program Obf that takes as input a
program P (generally either a Turing Machine or Circuit), and a security parameter
λ, and produces another program P̂ , such that Obf is:

• Functionality Preserving: P̂ is “equivalent” to P , meaning P̂ (x) = P (x) for
all inputs x.

• Efficient: The running time of Obf is polynomial in λ and in the size of P .

• Polynomial Slowdown: The running time of P̂ is polynomial in λ and in the
running time of P

The remaining piece to fully specify obfuscation is security. Last time, we saw two
definitions:

Definition 2. An obfuscator Obf is Virtual Black Box (VBB) secure if, for any PPT
adversary A, there exists a simulator S and negligible function negl such that for any
program P , ∣∣Pr[A(Obf(P, λ)) = 1]− Pr[SP (|P |, λ) = 1]

∣∣ < negl(λ)

Here, the running time of S is polynomial in |P | and λ, and S takes unit time to
make an oracle query to P .

Definition 3. An obfuscator Obf is indistinguishability secure if, for any PPT ad-
versary A and any two equivalent programs P0 and P1 of the same size, there exists
a negligible function negl such that

|Pr[A(Obf(P0, λ)) = 1]− Pr[A(Obf(P1, λ)) = 1]| < negl(λ)

1

1 Impossibility for VBB Obfuscation

Here, we show that VBB obfuscation is impossible in general. The proofs are due to
Barak et al. [BGI+01]. If we strengthen VBB obfuscation to allow the adversary to
produce arbitrary strings instead of a single bit, and require the simulator to simulate
the string with just black box access, the impossibility is straightforward. Indeed,
there is one thing that A can do that S cannot: output the obfuscated program P̂ .
P̂ is a polynomial-sized program that computes the functionality of P . An adversary
given just black-box access to P cannot in general produce such a program.

Now, we turn to the harder case where the adversary only outputs a single bit. We
first prove impossibility for Turing Machines, and then prove impossibility for circuits.

1.1 Impossibility of VBB Obfuscating Turing Machines

Now that we only allow A to output a single bit, what can A possibly do with the
code for P̂ that she cannot do using black-box access to its functionality? She could
try to output a single bit of the program description. However, it is plausible that the
obfuscator makes sure that each individual bit is 0 or 1 with 50% probability. What
else can A do with P̂?

One thing she can do is run P̂ on itself. While the simulator can learn the output of
P on arbitrary inputs of its choice, it does not know any code for P . This prevents
it from choosing P̂ — or any program with the same functionality as P — as an
input. If P does something special on P̂ (say, output some secret value), then A can
potentially do something with P̂ that S cannot.

Our goal, roughly, is then to devise a program P such that, for any code P̂ with the
same functionality as P , P̂ (P̂) outputs some secret (we will not quite get this, but
will get something close that is good enough). Moreover, this secret should not be
learnable just given black-box access to P .

The starting point will be the following unlearnable function

Cα,β(x) =

{
β if x = α

0 if x 6= α

Cα,β is just a point function that outputs β on input α, and outputs 0 elsewhere.
Here, α, β ∈ {0, 1}λ. This function will not be enough for us, since Cα,β(P) = 0 for
almost any program P that implements Cα,β — in particular, it does nothing special
when run on itself.

Instead, we will give a second program Dα,β that does do something different on

2

programs that implement Cα,β. Namely,

Dα,β,γ(C) =

{
γif C(α) = β

0if C(α) 6= β

If A is given any code Ĉ, D̂ for both Cα,β and Dα,β,γ, then it can easily learn γ by

running D̂(Ĉ). Moreover, any simulator S given oracle access to Cα,β and Dα,β,γ

cannot find an accepting input for either Cα,β or Dα,β,γ. Therefore, these programs
demonstrate an impossibility for a 2-program version of VBB obfuscation.

To get an impossibility for a 1-program version, we do the following. Let Eα,β,γ(b, x)
for a bit b be the program that, if b = 0 runs Cα,β(x), and if b = 1 runs Dα,β,γ(x).

Consider the following adversary A. On input Ê, A computes the program Ĉ obtained
by fixing the input b = 0, and the program D̂ obtained by fixing the input b = 1.
Then A runs and outputs the result of D̂(Ĉ). If Ê implements Eα,β,γ, then A(Ê) = γ.

However, a simulator S given black-box access to Eα,β,γ can never find an input that
causes Eα,β,γ to give anything but 0. Hence, S cannot output γ.

Remark 4. In the above, we have ignored the efficiency of the various functions. In
particular, the program Dα,β,γ and the adversary A will not halt on all inputs (let alone
halt in polynomial time). This is easily remedied by having the program and adversary
run for a certain polynomial number of steps, and output 0 if the computation is not
finished.

This gives us the following theorem:

Theorem 5. There do not exist VBB obfuscators for Turing Machines.

Remark 6. The proof above actually shows something much stronger: not only does
any obfuscator fail to VBB obfuscate some functions, but there are functions that
are unobfuscateable by any VBB obfuscator, even ones that take arbitrary time to
obfuscate.

1.2 Impossibility for Circuits

Here, we prove the following:

Theorem 7. VBB obfuscation for circuits does not exist

The proof in the Turing machine setting roughly required the ability to run an ob-
fuscated program on itself. For Turing machines, this is okay, since Turing machines
operate on unbounded inputs. For circuits, however, the input is typically much

3

smaller than the description size, precluding the possibility of running a circuit on
itself.

Instead, we will use an approach which uses Fully Homomorphic Encryption (FHE).

Definition 8. A (secret key) fully homomorphic encryption scheme is a quadruple of
PPT algorithms (Gen,Enc,Dec) such that:

• Gen(λ) outputs a secret key k and two polynomial time binary operators ⊕ and
⊗.

• Correctness of decryption: For all λ and all messages m ∈ {0, 1}, Dec(k,Enc(k,m)) =
m,

Pr[Dec(k,Enc(k,m)) = m : (k,⊕,⊗)← Gen(λ)] = 1

• Correctness of homomorphic operations: For all λ, all message pairs
m0,m1 ∈ {0, 1}, the following holds:

Pr[Dec(k,Enc(k,m0)⊕ Enc(k,m1)) = m0 +m1 : (k,⊕,⊗)← Gen(λ)] = 1

Pr[Dec(k,Enc(k,m0)⊗ Enc(k,m1)) = m0 ×m1 : (k,⊕,⊗)← Gen(λ)] = 1

Here, + is carried out mod 2.

• CPA security: Consider the following game between an adversary and chal-
lenger. The challenger is parameterized by the security parameter λ and a bit
b.

– The challenger generates (k,⊕,⊗) ← Gen(λ). It gives ⊕,⊗ to the adver-
sary.

– The adversary comes up with two sequences of messages m
(0)
1 , . . . ,m

(0)
t ,m

(1)
1 , . . . ,m

(1)
t ∈

{0, 1}, which it sends to the challenger.

– The challenger encrypts the sequence of messages corresponding to bit b.
That is, it computes c1, . . . , ct where ci ← Enc(k,m

(b)
i). It then gives the

sequence {ci}i∈[t] to the adversary.

– The adversary makes a guess b′ for b.

Let Wb(A, λ) be the probability b′ = 1 when the challenger is uses bit b and
security parameter λ, and the adversary is A. CPA security means that for all
PPT adversaries A, there exists a negligible function negl such that

|Pr[W0(A, λ) = 1]− Pr[W1(A, λ) = 1]| < negl(λ)

Lemma 9. If CPA-Secure FHE exists, then VBB obfuscation for circuits does not.

4

Proof. Let (k,⊕,⊗) be the output of Gen(λ), let α, β be random in {0, 1}λ, γ ∈ {0, 1},
and let c = Enc(k, α) (here, encryption is done bit-wise).

Let Ck,⊕,⊗,α,β,γ,c the the following circuit:

Ck,⊕,⊗,α,β,γ,c(i, x) =



(⊕,⊗, c) if i = 0

β if i = 1 and x = α

0 if i = 1 and x 6= α

γ if i = 2 and Dec(k, x) = β

0 if i = 2 and Dec(k, x) 6= β

Now consider the following adversary A, that receives some obfuscated circuit Ĉ. A
first runs Ĉ(0, 0) to get ⊕,⊗, c. Next, let D̂(x) = Ĉ(1, x) be the circuit with i = 1
hardwired. Treat the circuit D̂ as an arithmetic circuit of + and × gates. Let D̃ be
the circuit with +,× replaced with ⊕,⊗. Feed c into D̃, by feeding ci into the ith
input. Run D̃(c), obtaining output d. Finally, run Ĉ(2, d), and output the result.

If Ĉ is a circuit that implements Ck,⊕,⊗,α,β,γ,c for c as above, then the output of D̃,
namely d, will be an encryption of β. This is because D̃ homomorphically evaluates
the point function Cα,β defined in the Turing machine proof, and the input is an
encryption of α.

Then running Ĉ(2, d) will give γ.

Meanwhile, consider a simulator S given just black box access to Ck,⊕,⊗,α,β,γ,c. Ef-
fectively, S has three oracles: the oracle E that always outputs (⊕,⊗, c), the point
function Cα,β, and the oracle

Fk,β,γ(x) =

{
γ if Dec(k, x) = β

0 if Dec(k, x) 6= β

We wish to show that S cannot find γ. Suppose towards contradiction that S can
output γ with probability 1 − negl(λ). Since the only oracle that depends on γ is
Fk,β,γ, this means that with probability 1− negl(λ), at some point S queries Fk,β,γ on
a ciphertext d such that Dec(k, d) = β. Consider the first such query d to Fk,β,γ. For
all prior queries to Fk,β,γ, F outputs 0.

Next, prior to the query on d, the view of S is independent of β, unless it queries
Cα,β on α. Since the query d is an encryption of β, this means it must have queried
Cα,β on α prior to querying Fk,β,γ on d (or got lucky, and guessed β, which can only
happend with probability 2−λ). Therefore, up to the point where S queries Cα,β on
α, the oracles Cα,β and Fk,β,γ output 0, except with exponentially small probability.

Now consider replacing c with encryptions of 0. In this case, the view of S is com-
pletely independent of α until it makes a query to Cα,β on α. Therefore, S can only

5

query Cα,β on α with probability q×2−λ, where q is the total number of queries made
by S. Since q is a polynomial, this probability is exponentially small. Since S never
makes a query to C on α, the view of S is independent of β until it makes a query
to F on an encryption of β. Again, since the total number of queries is polynomial,
this means that S can only make such a query with exponentially small probability.
Therefore, with overwhelming probability, all of S’s queries to C or F return 0 in this
case.

This means we can effectively distinguish encryptions of 0 from encryptions of α.
Indeed, consider the following adversary B for the FHE scheme. B chooses a random
α, and sends α to its challenger. In return, it receives ⊕,⊗ as well as c, which is
either Enc(k, α) or Enc(k, 0).

B now runs S as a subroutine. When S makes a call to E, B responds with (⊕,⊗, c).
When S makes a call to F , B responds with 0. When S makes a call to C, B does
one of two things:

• If the oracle query is on α, then B aborts and outputs 1.

• Otherwise, B responds to the oracle query with 0.

If S finishes andB never aborts, thenB outputs 0. In the case where c is an encryption
of α, then with overwhelming probability B correctly answers all oracle queries up
until the point where S queries C on α, which happens with overwhelming probability
by the arguments above. Therefore, B outputs 1 with overwhelming probability.

In the case where c is an encryption of 0, then with overwhelming probability B
answers all queries correctly. Since S does not query on α in this case, B finishes
without aborting and outputs 0. Therefore, B distinguishes encryptions of α from
encryptions of 0 with high probability, contradicting the security of the FHE scheme.

Next, we see that assuming FHE is unnecessary for the impossibility, and instead we
can assume only one-way functions. One-way functions are the most basic object in
cryptography, meaning this assumption is very minimal.

Definition 10. A one-way function is a polynomial-time computable function OWF :
{0, 1}∗ → {0, 1}∗ such that the following holds. For any PPT adversary A, there
exists a negligible function negl such that

Pr
x←{0,1}λ

[f(A(f(x))) = f(x)] < negl(λ)

The idea is to use VBB obfuscation to build an FHE scheme. Thus, if VBB obfusca-
tion exists, FHE exists, and therefore VBB obfuscation does not exist.

6

Lemma 11. If one-way functions and VBB obfuscation for circuits exist, then so
does FHE

You will prove this lemma in your homework.

The last piece is the following:

Lemma 12. If VBB obfuscation for circuits exists, then so do one-way functions.

Proof. Let Obf be a VBB obfuscator. Let F (α, β, r) = Obf(Cα,β; r). Here, α ∈ {0, 1}λ
and β ∈ {0, 1}. Cα,β is a circuit computing the point function

Cα,β(x) =

{
β if x = α

0 if x 6= α

The notation Obf(C; r) means to obfuscate the circuit C, and whenever Obf needs
to flip a coin, look a the next bit of r and use that to determine the coin toss. Thus,
while Obf(C) may be randomize, Obf(C; r) is a deterministic function.

Why is this function one-way? Suppose there was an adversary B that inverted F
with non-negligible probability ε. We will construct the following adversary A for Obf.
A, on input a circuit Ĉ, runs B(Ĉ) to obtain α, β, r. A then checks if F (α, β, r) = Ĉ.
If not, A outputs a random bit. If so, then A outputs β. Then, if Ĉ is an obfuscation
of Cα,β for random α, β (that is, Ĉ = Obf(Cα,β; r) = F (α, β, r) for random α, β, r), A
outputs the correct answer for β with probability 1

2
+ ε

2
.

Meanwhile, consider any simulator S that is given oracle access to Cα,β. Unless S is
able to query on α (which occurs with exponentially small probability), S can only
guess β with probability 1

2
. Therefore, the simulator is unable to simulate the output

of A, violating VBB security.

Hence, if we assume VBB security, the adversary B could not have existed, completing
the proof.

References

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (Im)possibility of obfuscating
programs. In Advances in Cryptology — CRYPTO 2001, number Im, 2001.
2

7

	Impossibility for VBB Obfuscation
	Impossibility of VBB Obfuscating Turing Machines
	Impossibility for Circuits

