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Notes for Lecture 17

Today: We will finish the proof of VBB security.

Last time we saw an obfuscator that seemed to block the strategies of attack we have
on multilinear maps. But now we actually need to prove that it does this.

Just as before, the ideal scenario is that we can make some concrete assumption
on multilinear maps and reduce solving that problem to breaking our obfuscator.
Unfortunately, we don’t know how to do that.

Instead, we’ll prove security in a generic model that seems to capture known attack
strategies.

When we obfuscate a program, we produce a bunch of plaintext elements we want to
encode. So think of the obfuscation plaintexts as a1, . . . , at. These will be encoded
at levels s1, . . . , st. The model is going to choose at random r1, . . . , rt ← R where R
is a ring.

We can think of the model as keeping track of a table with columns for ai, si, ri
and labels `i. Label `i will represent ai, ri at level si, so addition of `1 + `2 looks like
a1 + a2, r1 + r2. Multiplication of `1 × `2 is a1a2, a1r1 + a2r1 + r1r2.

The adversary interacts with the model as follows. The adversary first receives labels
{`i}. The adversary makes +,× requests on these labels and receives the labels of
the outputs of these requests.

The adversary then makes isZero queries on labels, and these queries get responded
to with a true/false based on whether or not the corresponding ai and ri’s evaluate
to 0.

We also have that at the end, the adversary can query on a polynomial Q({mi}), and
if Q({ri}) = 0, the adversary wins.

If we want to prove VBB security, we need to be able to simulate the view of the
adversary.

We call this model the MMap world. We can consider an alternate world called the
Simulated World, where the adversary interacts with a simulator S that handles the
same queries. S doesn’t get to see any of the ai’s or ri’s. S just gets to interact with
some program P where it submits x and receives P (x).

We need to construct this simulator. The requirement is that this simulated world is
indistinguishable from the honest Mmap world case to the adversary.

Suppose we have a branching program. We left and right multiply so we have
αi,b0,b1R

−1
1 A′i,b0,b1Ri+1.
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We are going to divide the integers from 1 to k into chunks. We have a straddling
set system for each chunk which means that to union anything, you have to union an
entire chunk.

We look at the top bit and the bottom bit from αi,b0,b1R
−1
1 A′i,b0,b1Ri+1 and those will

correspond to bits in a chunk.

Two classes ago when we were discussing this construction, we were saying that the
adversary can only really run the program on inputs and zero tests. What these sets
force us to do is that if we add two elements come from inconsistent inputs, we’ll have
to fill out an entire chunk for that input.

Doing +,× is easy. If we do IsZero, we do `i → C({ai}). We can associate any label
with a polynomial. So the difference is that in the original Mmap world, we associate
ring elements. Here we associate formal variables ai.

There is a lemma which we won’t prove that says there is an efficient procedure that
maps C into T ⊆ {0, 1}n. Also C =

∑
x∈T . |T | will be polynomial sized and Cx

are polynomials in variables consistent with x. It will be consistent for all x for
which those two bits match b0, b1. So this breaks C into polynomially many smaller
polynomials Cx.

It turns out these polynomials may not correspond to an honest execution of the
program. But we will show in that case that they will not be useful to the adversary.

We can rewrite cx as
∏

i αi,xinp0(i)
,xinp1(1)

c′x. So c′x is polynomial in (R−1i Ai,b0,b1 , Ri+1).

One change we make now is we change Ri−1 to Radjoint
i . This is just the inverse with

no determinant factored out and randomness means that we don’t have to worry
about this.

Suppose C = 0 with non negligible probability. By the schwartz Zippel lemma it
must be that C is actually equivalent to 0 when I think of C as a polynomial over
αi,b0,b1Ri.

If C is 0 then every term in the sum is identically zero since terms cannot cancel out
since the αi,xinp0(i)

,xinp1(1)
makes things linearly independent.

So to see whether or not C evaluates to 0 on the obfuscated randomness, it suffices
to determine if C ′x is identically 0 for all x ∈ T .

The BGKPS approach for doing this is to look at the case of a single input branching
program.

So we have R−10 A0bR1, R
−1
1 A1bR2, . . . , for b = 0, 1.

When i consider C ′x, I’m considering one path through these matrices, so just one
matrix from each column. After I consider the first i columns, we have something
times Ri and the Ri masks everything.

Let Bi,xinp(i)
be the whole block containing Ai,xinp(i)

. Then Bi,xinp(i)
is uniformly ran-
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dom conditioned on ŝ
∏
Bi,xinp(i)

t̂ = s
∏
Ai,xinp(i)

t.

(See board to fill in details here).

But this proof will not completely work. It is not sufficient to just answer isZero
queries. We need to make sure they correspond to honest executions.

What I need is that if Cx is not an honest program evaluation, then Cx 6= 0 with
overwhelming probability.

Suppose that s
∏`′<`

i=1 Ai,xinp0(i)
,xinp1(i)

= 0.

I need to impose a technical condition that all these partial products are nonzero. We
need something nonshortcutting, so if we take a product minus the bookends it needs
to be nonzero. For all x, we need s

∏`
i=1A

′
i,xinp0(i)

,xinp1(i)
6= 0 and

∏`
i=1A

′
i,xinp0(i)

,xinp1(i)
t 6=

0.

We claim that if the matrices are full rank, this implies non-shortcutting.

To get these requirements we can append things to the diagonal (see board pictures).
We need Si,b0,b1 to be a random matrix and not a scalar so the branching program
doesn’t get annihilated.

Proof Sketch.

C ′x is expanded out into a giant sum of monomials. Each monomial in C ′x involves
exactly 1 element from each Bi,xinp0(i)

,xinp1(i)
.

We’re going to consider a generic Cx. This means we think of each Cx as
∑
βmm

where m is summed over the monomials.

Now I expand the monomials in terms of {Ri}.
Now Cx =

∑
Bxpoly(Ri).

Basically what we can show is that Cx is not identically zero unless this polynomial
corresponds to the correct matrix branching product. We can solve a linear system
for the Bx and we see that what we have is an honest execution of the branching
program.

We assume Cx = 0. Linear system in Bx.

To test if Cx is equivalently 0, first query on P (x). If P (x) = 0, non-zero. Regardless
of what the adversary does, any polynomial is going to be nonzero. Else, test C(x)
on random values such that their product is 0.

If C(x) = 0, it is zero. Else, non-zero.

This along with what we showed last time tells us that we can’t annihilate this
program.
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