
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 13 (10/27/16)
Lecturer: Mark Zhandry Scribe: Fermi Ma

Notes for Lecture 13

Last time we constructed iO for branching programs. This allowed us to apply Bar-
rington’s Theorem and get iO for NC1 (languages with log-depth circuits). Today
we will see something called boosting to get iO for P/poly (languages with poly-size
circuits).

1 iO for P/poly

Claim 1. If we have iO for NC1 as well as Fully Homomorphic Encryption where we
can decrypt in log-depth (we denote this as FHE∗), we can get iO for P/poly.

The construction is as follows. Suppose we have iO for NC1, and we have an FHE∗

scheme Gen,Enc,Dec.

We construct iO′(·) that can obfuscate any poly-size circuit C. First, generate

(dk0, ek0,⊕0,⊗0)← Gen(), (dk1, ek1,⊕1,⊗1)← Gen().

Set d0 ← Enc(ek0, C) and d1 ← Enc(ek1, C). Assume we have some circuit Fx(·) that
computes Fx(C) = C(x). Using this, we can compute Enc(ekb, C(x)) by applying the
homomorphic operations to db.

Let Evalb(x, db) be the program that applies the homomorphic operations to evaluate
C on x. π will be an NP proof that e0 = Eval0(x, d0) and e1 = Eval1(x, d1). The proof
π can be generated by running Evalb(x, db) for b = 0, 1 and writing down the values
on all the wires. Verifying these gates can be done in log depth.

So now we define Pdk0(e0, e1, x, π) as the circuit the first checks if π is a valid proof
that e0 = Eval0(x, d0) ∧ e1 = Eval1(x, d1). If so, it outputs Dec(dk0, e0). Otherwise it
aborts.

Finally, our iO′ scheme will output (iO(Pdk0),Eval0,Eval1, d0, d1).

To recap: To use this iO′ scheme, we would input a poly-sized circuit C and then
receive (iO(Pdk0),Eval0,Eval1, d0, d1). To evaluate C on x, we would compute e0 =
Eval0(x, d0), e1 = Eval1(x, d1). Then we generate the proof π by examining the wires
of these circuits, and then we feed (e0, e1, x, π) into iO(Pdk0), which will output C(x).
Note that all the operations of Pdk0 can be done with a log-depth circuit.

Theorem 2. The above iO scheme is secure.

1

Proof. Suppose we have C0 ≡ C1.

Hybrid 0. We set P̂ = iO(dk0), d0 = Enc(ek0, C0), d1 = Enc(ek1, C0).

Hybrid 1. This is the same as Hybrid 0, except we change d1 so that d1 =
Enc(ek1, C1). This is indistinguishable from Hybrid 0 by FHE security, since ek1
is hidden.

Hybrid 2. This is the same as Hybrid 1, except we change the program to be
P̂ = iO(Pdk1). The only change is in the last line where we change it to output
Dec(dk1, e1). The claim is that Pdk0 is equivalent to Pdk1 . To see why, suppose not.
The two programs will only output something at the same inputs (since the checks are
the same), so they must differ at some point where they both produce an output. So
we have Pdk1(e0, e1, x, π) 6= Pdk0(e0, e1, x, π) for some e0, e1, x, π. But since they both
output something, the check passed. This means we must have e0 = Eval0(x, d0) and
e1 = Eval1(x, d1). So e0 = Enc(ek0, C0(x)) and e1 = Enc(ek1, C1(x)). Pdk0 outputs
C0(x) and Pdk1 outputs C1(x), which are equivalent since C0 ≡ C1. This directly
contradicts our assumption. Since the programs are equivalent, iO security (of our
underlying NC1 iO scheme) implies Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 3. This is the same as Hybrid 2, except we change d0 to be d0 = Enc(ek0, C1).
This is indistinguishable from Hybrid 2 by FHE security, since now ek0 is hidden.

Hybrid 4. We change the obfuscated program back to P̂ = iO(Pdk0). This follows
from the same proof as given for Hybrid 2.

Hybrid 0 is equivalent to the C0 case and Hybrid 1 is equivalent to the C1 case, so
this completes the proof.

2 iO for P/poly from Weaker Primitives

We can give a more flexible approach that uses weaker primitives than FHE∗.

Theorem 3. If we have subexponentially secure iO for NC1 and PRFs in NC1, we
can get iO for P/poly.

Let’s recall the way we obfuscated matrix branching programs (MBP) in the previous
lecture.

An MBP is composed of two sequences of l square matrices Ai,b for i ∈ [l] and
b ∈ {0, 1}. We can think of these as being written out as two rows, so that the
matrices Ai,0, Ai,1 are in the ith column. Additionally, we have a bookend row vector
s at the beginning and a bookend column vector t at the end. Finally, we have a
function inp(i) : [l]→ [n]. On input x ∈ {0, 1}, M(x) evaluates to s · (

∏l
i=1Ai,xinp(i)

)t.
We say that BP (x) = 1 iff M(x) = 0.

2

We applied Killian rerandomization which takes eachAi,b and replaces it with αi−1,bR
−1
i−1Ai,bR

i.
We also replaced s with α0sR0 and t with αl+1R

−1
l t. We then encoded these matrices

in an asymmetric multilinear map, thinking of each matrix as a separate plaintext
element. The idea was that if we multiplied one matrix from every column (as we
would with an honest execution), this would correspond to an element in the top level
of the multilinear map, which we could zero test.

The problem was that the naive implementation of this, which was to associate the
singleton set {i} with column i, is vulnerable to a mixed-input attack (see Lecture 12
notes for an example). We fixed this with straddling sets. These are two sequences of

sets S
(b)
0 , . . . , S

(b)
j for b = 0, 1 such that ∪jS(0)

j = ∪jS(1)
j . We also need S

(b)
i ∩ S

(b)
j = ∅

for i 6= j. We also need that ∀T0, T1 6= [j], we have ∪j∈T0S
(0)
j 6= ∪j∈T1S

(1)
j . We can

do this with S
(0)
0 , . . . , S

(0)
j set to {0}, {1, 2}, . . . , {j − 1, j} and S

(1)
0 , . . . , S

(1)
j set to

{0, 1}, {2, 3}, . . . , {j − 2, j − 1}, {j}.
For each value of i ∈ [l] we come up with a different straddling set system disjoint
from all the other set systems. We encode the elements for an input bit in the levels
corresponding to these sets.

So our matrices are encoded as [αi,bR
−1
i−1Ai,bRi]S(b)

k (inp(i))
, where inp(i) specifies which

straddling set system we are using.

This obfuscator gives iO security in the generic multilinear map model, but last time
we claimed that this model isn’t great because we can get VBB security.

Let’s suppose we’re in the setting where each input bit is read only once. In that case
we don’t need to worry about straddling sets. What we can do is multiply the sum of
the two matrices of the first column with the sum of the two matrices of the second
column and so on for every column. This comes out to look like

∑
xM(x) (with some

unimportant α factors in front, which are not important for this illustration). This
sum is 0 if and only if BP (x) = 1 everywhere. By making this query, I can learn
whether or not this function is identically 1, which is something that I should not be
able to do with VBB obfuscation.

To address this issue, we’ll use dual input branching programs. This is where each
column has four matrices instead of two. For our notation, the first subscript will
denote column, and the last two subscript bits will specify one of the four matrices.
So for example column 3 consists of matrices A3,0,0, A3,0,1, A3,1,0, A3,1,1. The inp(·)
function now outputs {j, k}, and we’ll write inp0(i) = j and inp1(i) = k. So now the
program evaluates to

M(x) = s ·
l∏

i=1

A1,xinp0(i)1
,xinp1(i)

· t.

We’ll assume each pair {j, k} is read at least once. If our original branching program
were sufficiently long, then we can make this happen. If the branching program is not

3

long enough, then we can pad it with extra matrices. Now each matrix is encoded as

[αi,b0,b1R
−1
i−1Ai,b0,b1Ri]S(b0)

k0
(inp(i)0)∪S

(b1)
k1

(inp(i)1)

Correctness is not hard to see.

Theorem 4. In the generic multilinear map model, for any isZero query on [P][k].
We can write P =

∑
x∈S Px where |S| is polynomial size and Px depends on encodings

consistent with x.

It turns out by querying C(x) ∀x ∈ S we can decide if P = 0. This allows us to
simulate the view of the adversary.

4

	iO for P/poly
	iO for P/poly from Weaker Primitives

