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Notes for Lecture 12

1 Overview

Today, we’ll see how to use multilinear maps to build obfuscation. We’ll build obfus-
cation for a restricted model of computation called branching programs, so we won'’t
get circuit obfuscation right away:.

Using Barrington’s Theorem, we can build iO for NC'. This class contains all functions
computable by log depth circuits. It is essentially corresponds to boolean functions.
With boosting/bootstrapping and FHE, we can get iO for polynomial size circuits.

2 Matrix Branching Programs

In a matrix branching program (MBP), we have two sequences of | square matrices.
Imagine writing out these matrices in two rows, such that the first row contains the
matrices A, for ¢ € [I] and the second row contains the matrices A, for i € [{].

Matrix branching programs are evaluated on inputs z € {0,1}". We will have a
function inp : [[] — [n] that maps column indices to n. So we can imagine associating
each column 7 with inp(i). We say that the width of an MBP is the dimension of the
square matrices A; .

On input z, the M(z) evaluates to

An MBP gives us the boolean function F'(z), which is 0 if M(x) = I and 1 otherwise.

So how do we get such a program for a log depth circuit?

Theorem 1. (Barrington’s Theorem) For a circuit C of depth d, we can get a matriz
branching program BP with width 5 and | = 4.

We can only handle NC' because the size of the branching program blows up with
large depth.



As expected, Barrington’s Theorem gives us an MBP where M (z) will be [ if C(x) =0
and some other fixed matrix A if C(z) = 1.

Proof of Barrington’s Theorem.

We will use matrices A, B such that A, B, ABA™1B~! are all pairwise similar. A and
B are similar if A = PBP~! for some invertible matrix P. This holds trivially for A
and B set to the identity matrix, so we require that they not be the identity.

Suppose [ want to get a matrix branching program that computes some circuit. As-
sume by induction that it can compute the wire(s) leading into the top gate. We
consider the possible cases for the top gate.

If it is a NOT gate, with My(x) being the input MBP, then we just set M (z) =
PA 'My(x)P~. To implement this, we take the two leftmost matrices of the My(x)
branching program and multiply them on the left by PA~!, and we take the rightmost
matrices of My(z) and multiply them on the right by P~!. So if My(z) = A, then
M () outputs the identity. If My(x) = I, then the output is PA~'P~1.

Suppose it is an AND gate with BFy(z) and BP;(z) fed in with respective MBPs
Moy(z), My(xz). We use the fact that we have matrices A and B that are sim-
ilar. We have My(z) output A or I and M;(z) output B or I. Set M(z) =
Mo (z) M, (z) My ()M (z). We can implement this by concatenating four branch-
ing programs. If either My(x) or My(z) is I, then clearly this collapses to I. But if
both are not I, then this becomes ABA='B~!,

3 Obfuscating Branching Programs

We’ll now consider the “bookend” version of a matrix branching program. To the left
of all the matrices, we add a 1 x w row matrix s and to the right of all the matrices, we
add a w x 1 column matrix ¢ (w is the width the of the MBP). So the MBP product

is just a scalar
!

M(z) = s(] [ Ay )t

i=1

We define Killian rerandomization to work as follows. Pick random matrices of di-
mension w X w random matrices R; for ¢ € [l] and random scalars «ay, for i € [ and
b € {0,1}. Also pick two bookend random scalar ag and a;;. For each matrix Ay,
left multiply by o R;—1 and right multiply by R;. For bookend s, right multiply by
agRy. For bookend ¢, left multiply by al+1Rl_1.

When we compute M (z), these random matrices will cancel each other out and the
input/output behavior should be unaffected. The randomization should ideally ob-
fuscate everything. The problem is that we don’t actually get any security from
this.



It turns out that the right way to do this is by encoding everything with a multilinear
map. If we actually multiply a matrix from every column (corresponding to an honest
execution), this should correspond to reaching the top level of the multilinear map.
At this point, we can zero test.

Ideally, we want that some simple assumption, such as the Multilinear Decisional
Diffie Hellman assumption, implies that this construction gives us iO. It turns out
this won’t work. For starters, the MDDH assumption does not appear strong enough
for us. Moreover, as we will see in the coming lectures, there are attacks on multilinear
maps that render many of these simple assumptions false.

What we’ll do instead is argue security in the Generic Multilinear Map Model. In
this model, we assume that the adversary only interacts with the multilinear map in
legal ways.

The model works as follows. We have some adversary A. The model M is given
some plaintext elements aq,...,a,. We can imagine these correspond to the Killian
rerandomization matrices before we encoded them. The model is also given what
level to encode these plaintexts elements at. For now, all it does is it writes these
down.

It comes up with random string labels {L;}i—1, . When the adversary wants to
add L + L', the adversary looks for a, S, a’, S’ It checks that S = S’. Then it creates
a” = a+d, and creates a new label L” for a”. We can define multiplication similarly.
When the adversary querys on isZero(L), it checks if the corresponding S is actually
equal to [k] and then responds with whether or not a is 0.

Theorem 2. We can construct VBB obfuscation in the Generic Multilinear Map
Model.

How is this possible? After all, in the first lecture, we showed that VBB obfuscation
does not exist! What this says is that there must be attacks on obfuscation that
lie outside of the generic multilinear map model. If you think about our attack
from the first lecture, this actually makes sense. In that attack, the program is
evaluated homomorphically on some input. Our homomorphic encryption scheme
can homomorphically evaluate any function that can be represented as a circuit of,
say, AND, OR,NOT gates. However, in the generic multilinear map model, evaluating
the obfuscated program involves making calls to the model itself. This means it is
not possible to represent the program evaluation as a circuit in this model, and we
can therefore not homomorphically evaluate the obfuscated program.

It actually turns out that many generic models suffer from weaknesses such as this.
However, the attacks on this tend to be pathological, so we hope that in most normal
cases we can still get security.

How do we encode levels? The obvious way is to have the singleton set {i} correspond
to column 7. The problem is that the adversary can do a mixed input attack. Suppose



for example that inp(1) = inp(4) = b. Then our branching program must include
Aqp and Agp. In other words, we must pick the top matrix in both columns 1 and
4 or the bottom matrix. But nothing is stopping the adversary from picking the top
matrix in column 1 and the bottom matrix in column 4. These attacks are dangerous
because two equivalent programs are only equivalent when you are evaluating them
on normal inputs.

We can make this program robust against such attacks by using straddling sets.
Continuing the above example, if we assign {1,3} to the top matrix of column 1 and
{1,4} to the bottom matrix of column 1, and {2,4} to the top matrix of column 4
and {2, 3} to the bottom matrix of column 4, we won’t be able to mix inputs. Any
attempt to do so will cause an element in the sets to be in common, which is not
allowed when multiplying in asymmetric MMaps.
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