
COS 597C: Recent Developments in Program Obfuscation Princeton University
Lecture 11 (10/20/2016)
Lecturer: Mark Zhandry Scribe: Kevin (Qipeng) Liu

Notes for Lecture 11

In this lecture, we show a construction of multilinear maps. There are couples of
different constructions in the literature [CLT13, GGH13, GGH15]. We are going to
talk about the construction of [GGH13] which is the best understood in terms of their
security.

So let us first give some notations.

• Z for integers and Z[x] for integer polynomials;

• Let P (x) be a monic degree n polynomial where “monic” means that the leading
coefficient is 1; i.e. P (x) = xn + an−1x

n−1 + · · · + a1x + a0, This polynomial
P defines an equivalent class on the polynomial ring Z[x]: we say Q0(x) is
equivalent to Q1(x) or Q0(x) ≡ Q1(x) (mod P (x)) iff p(x) | (Q0(x)−Q1(x)), in
other words,

∃R(x) ∈ Z[X], P (x)R(x) = Q0(x)−Q1(x)

It is easy to see that it defines an equivalent class.

• Z[x]/P (x) is the set of equivalent classes defined by P (x) where P partitions
Z[x] into a bunch of equivalent classes.

For C be an equivalent class in Z[x]/P (x) where P (x) = xn +bn−1x
n−1 · · · b1x+b0, we

can actually associate it with a vector xc ∈ Zn. Assume Q(x) = anx
n + an−1x

n−1 +
· · ·+ a1x+ a0

1 is a polynomial in the equivalent class C, let Q′(x) = Q(x)− anP (x).
We find that

Q′(x) = (an−1 − anbn−1)xn−1 + (an−2 − anbn−2)xn−2 + · · ·+ (a0 − anb0)

whereQ′(x) is a polynomial of degree at most n−1. So we can describe this polynomial
by the vector (an−1−anbn−1, an−2−anbn−2, · · · , a0−anb0) ∈ Zn. And this description
is unique because for any Q′1(x) and Q′2(x) of degree n − 1, it is easy to see that
Q′1(x) ≡ Q′2(x) (mod P (x)) if and only if Q′1(x) = Q′2(x) (P is of degree n).

We can think Z[x]/P (x) ∼= Zn. And we can actually define additions and multipli-
cations on Zn. Addition is just component-wise. But for multiplication, we can first
interpret two vectors as polynomials in Z[x], multiply them in Z[x] and finally map
the result back in Zn.

1Here Q can have arbitrary degree. We can still have the polynomial Q′(x) = Q(x)− A(x)P (x)
by doing “long division method”.

1



So we are going to be interested in a particular P (x) = xn +1 where n is a power of 2.
This polynomial P (x) is called Cyclotomic. For this class, we will not worry about
why this particular P (x) is chosen. Having this polynomial allows module operations
to be quite easy and also this P (x) is irreducible. And let R = Z[x]/P(x). We use
Rq = R/qR denote all vectors in R such that each coefficient is mod by q. And we
can choose a specific q such that Rq is a field.

Now we turns to rational polynomials instead of integer polynomials. Let K =
Q[x]/(xn + 1) ∼= Qn and K is a field.

Let g ∈ R and we define 〈g〉 = {ag : a ∈ R}. It is easy to see that 〈g〉 is a (principle)
ideal such that

• (〈g〉,+) is a subgroup of (R,+);

• for all r ∈ R and x ∈ 〈g〉, we have r · x, x · r ∈ 〈g〉;

By giving the ideal 〈g〉, we can also define the set of equivalent classes R/〈g〉.
Now we are giving the construction of multilinear maps in [GGH13].

Setup

• Choose a random “short” g ∈ R (g−1 ∈ K is also “short”) where “short” means
all the coefficients are “short” or in other words, all the coefficients are generated
by discrete gaussian.

• We check whether g−1 is also short if not go back to step 1. Actually the paper
shows that we will not repeat it “too many” times. You will see that why we
need “short” property for g−1 later.

• Let QR = R/〈g〉 to be the plaintext space. it is actually a finite object. We can
actually assume it is of prime order with the right choice of g. g is going to be
secret.

• A “level 0” encoding of an equivalent class e + 〈g〉 is a “short” description
c ∈ e+ 〈g〉.

• Choose an uniformly random secret z ∈ Rq (not required to be “short”) for
encoding at level i > 0. A “level i” encoding of e + 〈g〉 has the form c/zi

mod q where c ∈ e + 〈g〉 is short. We will denote a level i encoding of an
element a ∈ QR as [a]i.

• The output params = {[1]1, other basic parameters}.

2



With the above parameters, a level i encoding of a+ 〈g〉 is a short c ∈ a+ 〈g〉 divided
by zi. So [1]1 generated in Setup is actually 1+gr

z
for right r such that 1+gr is “short”.

It is easy to see that it satisfies that properties of multilinear maps:

• For two encodings [a]i, [b]i at the same level i, [a]i + [b]i = a+b
zi

= [a+ b]i where
a+ b is also “short”, i.e. it simply doubles.

• For two encodings [a]i, [b]j at different levels i, j, [a]i × [b]j = ab
zi+j = [a + b]i+j;

assume each entry in a, b is bounded by σ, then each entry in a · b is bounded
by nσ2; it is also “short”.

Here is the sampling procedure at level 0.

Sample(params, 0)

• Sample a random level 0 “short” encoding c ∈ R by discrete Gaussian. One can
show that c is an encoding of a random a ∈ QR.

• Output c.

Now let’s go to higher levels. Sampling a random encoding at level i > 0 is a secret
procedure.

Sample(params, z, i)

• Sample a random level 0 “short” encoding c ∈ R by discrete Gaussian; so this
c is an encoding of a random e

• Return c/zi mod q.

However the scheme is not enough. Consider we are constructing Key Exchange scheme
from this “multilinear maps”: three players A,B, C uniformly draw [a]0, [b]0, [c]0 using
Sample procedure and they encode [a]1, [b]1, [c]1 by simply computing [a]1 = [a]0× [1]1
etc. The problem here is that given [a]1, an adversary can simply get [a]0 by doing
division [a]1/[1]1 because [1]1 is public. To solve this problem, we need to introduce
a procedure called ReRandomize.

Before describing ReRandomize, we first modify Setup procedure and the output
params. The Setup procedure also prepares a set S = {x1, x2, · · · , xm} with size
m such that each xi is an encoding of 0 at level 1, xi = gri/z = [0]1. And let the

3



output params be {[1]1, S, other basic parameters}. With the set S, we can describe
ReRandomize at level 1: it takes params and an encoding [a]1, and outputs

[a]1 +
∑
i∈B

xi where B is an uniform chosen subset of S

In the paper, it shows that with a carefully chosen m, the new encoding is indistin-
guishable from a fresh generated [a]1.

Zero Test

We prepare a variable Pzt = zkh/g mod q where h is moderately “short”. Also we
add this term into params. So we have params = {[1]1, S,Pzt, other basic parameters}.
Then the zero test procedure ZeroTest(params, [a]k) is defined as: compute Pzt[a]k
mod q = h(gr + a)/g = hr + ha/g mod q. We have two cases:

• In the first case a = 0, the output is simply hr. We have already known h is
“short”. Because gr is short and g−1 is “short”, r itself is “short”. So hr is also
“short”.

• In the second case a 6= 0, then we have the term ha/g (mod q) which is not
“short”.

But Zero Test is not enough for Key Exchange, we need to extract a from [a]k. Intu-
itively since for any two encodings of a, the difference Pzt

(
a+gr1
zk

)
−Pzt

(
a+gr2
zk

)
is small

(the difference of the two encodings is the encoding of 0 at level k), we claim the high
order bits are the same. So we can throw away low order bits and use extractor to
get pseudo randomness.

So params = {[1]1, S,Pzt}. For obfuscation purpose, we only need Pzt to be public.
Finally, this construction can be easily extended to asymmetric multilinear maps by
replace z with z1, z2, · · · , zk.

References

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Advances in Cryptology–CRYPTO
2013, pages 476–493. Springer, 2013. 1

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–17. Springer, 2013. 1, 2

4



[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multi-
linear maps from lattices. In Theory of Cryptography Conference, pages
498–527. Springer, 2015. 1

5


