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Notes for Lecture 1

1 Introduction to Obfuscation

Program Obfuscation promises the seemingly impossible: software that can keep a
secret — even from the person who owns and is running the software! The “secret”
can come in many forms: a new proprietary algorithm, the secret key to unlock and
encrypted message, or the password to you bank account. The goal is to distribute
software — with the secret embedded in it — all the while guaranteeing that the
recipient of the software never learns the secret.

More precisely, a program obfuscator is a program compiler : it takes a program P
as input, and outputs a program P̂ . As with any compiler, the input and output
programs must be functionally equivalent: P̂ (x) = P (x) for all inputs x. An obfus-
cator is a special kind of compiler where the output program P̂ reveals “as little as
possible” about the program P . Clearly, if someone has P̂ , they can learn P (x) for
any chosen input simply by computing P̂ (x). In other words, the functionality of P
is always revealed by the obfuscated program P̂ . Ideally, this is the only information
that can be deciphered. The inner workings of P — that is, how the output P (x)
was obtained — should be entirely hidden. Any algorithms, cryptographic keys, or
passwords used in P should not be revealed.

Another way to think about obfuscation is as a form of encryption for programs. One
can always encrypt a program using a standard encryption techniques by encrypting
the 1s and 0s that constitute the code for the program. To anyone without the secret
decryption key, this encrypted program will look like just a random sequence of 1s
and 0s. Hence, any secrets embedded in the program will remain hidden, as desired.
However, this encrypted program is also completely useless as a program: the only
way to evaluate it is to decrypt (requiring the secret decryption key), and then run
the program. But with the secret decryption key, the entire original program, secrets
included, are revealed. Thus, with traditional encryption, security and functionality
are at odds. Obfuscation gives a way to resolve this conflict by allowing the program
to be encrypted (so that internal secrets are hidden), but simultaneously also allowing
the encrypted program to be evaluated.

1.1 Motivation

Why study program obfuscation? Here are some potential applications of obfuscation:
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Preventing Reverse-Engineering. Suppose you devise an efficient algorithm for
multiplying matrices in time O(n2). You wish to monetize your discovery by selling
software packages including your algorithm. To make the most money, you want
to offer packages at different price pints with different running times — say one
package multiplies matrices in time O(n2), another in time O(n2.1), and so forth. To
accomplish this, you have your program churn mindlessly for O(n2+ε) steps, and then
finally compute the matrices using your fast algorithm.

Unfortunately, someone can buy the cheapest version of your software — say, an
O(n2.5) version — inspect the code, and remove the part where the algorithm churns
mindlessly. In the end, this cheapskate obtains an O(n2) algorithm, but at a fraction
of the price. Obfuscation offers a very simple solution to this problem. Once the
O(n2.5) algorithm is obfuscated, the cheapskate has no hope of extracting the secret
O(n2) algorithm from the code.

Watermarking Software. You have a program that you wish to sell. However,
you are concerned about someone stealing your software and reselling it. Of course,
there is no way to prevent someone who actually bought your software from doing
this. Instead, you wish to discourage such behavior. Toward that goal, you indi-
vidualize your program to each customer, embedding some unique identifier into the
functionality of their program. You then obfuscate the program to make removing
the watermark difficult.

Cryptomania. Obfuscation has become a “central hub” for cryptography, in the
sense that almost any cryptographic task imaginable can be accomplished through
obfuscation.

For example, consider a setting where Alice and Bob wish to communicate over an
insecure channel which may have eavesdroppers. In order to hide their messages,
they encrypt every message. In the “traditional” setting, Alice and Bob have a
shared secret key k which they established at a prior point in time (say by meeting in
person, or by a briefcase handcuffed to a trusted courier). When Alice wants to send
a message m to Bob, she “encrypts” m with k, and sends the resulting ciphertext c
over the insecure channel. Bob, upon receiving c, “decrypts” using k to obtain the
message m. This form of encryption is called “secret key encryption” or “symmetric
key encryption” because the same key is used for encrypting and decrypting. This is
the kind of encryption that has been used throughout most of history.

However, symmetric key encryption is rather impractical for our current digital age.
People may want to communicate securely, even if they have never met in person and
do not want to go through the hassle of a trusted courier. The solution is “public
key encryption” or “asymmetric key encryption”. Here, Alice as a secret key dk that
she alone uses to decrypt. To allow Bob to send messages to her, Alice publishes
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an encryption key ek to everyone, which Bob can use to encrypt m as a ciphertext
c. This broadcast gives ek to eavesdroppers as well; even so, an eavesdropper armed
with ek (but not dk) should not be able to decrypt c.

How do we achieve public key encryption? With obfuscation, the answer is simple:
start with a symmetric key encryption scheme. Alice’s secret key sk is just a secret key
k for the scheme. Meanwhile, the public key ek is the obfuscation of the encryption
program, with k hardcoded. This program allows anyone to encrypt (by just running
the program on the message), but because it is obfuscated, the secret key remains
hidden. Thus, ek does not give you the ability to decrypt.

The usefulness of obfuscation does not end there. Consider the setting where you
wish to store data with a cloud provider. You do not trust the cloud provider with
your data, so you encrypt it. Now, you additionally wish to take advantage of the
providers computational resources to run computations on your data. Unfortunately,
with traditional encryption, the ciphertexts look like a jumble of random 1s and 0s
— there is no obvious way to perform computations on this data. Of course, you can
decrypt your data for the cloud, but then the cloud can abuse your data.

One solution is something called fully homomorphic encryption (FHE). In such an
encryption scheme, it is possible to add and multiply plaintexts, just given the cipher-
texts. That is, there is an operation ⊕ such that Enc(k, x)⊕Enc(k, y) = Enc(k, x+y)
and an operation ⊗ such that Enc(k, x)⊗Enc(k, y) = Enc(k, x×y). FHE easily allows
the cloud provider to blindly operate on encrypted data by substituting + with ⊕
and × with ⊗.

Here’s how to obtain FHE from obfuscation. ⊕ is an obfuscation of the program
that decrypts the input ciphertexts, adds them, and re-encrypts them. ⊗ is an ob-
fuscation of the analogous program for multiplication. These programs allow for the
computaitons on encrypted data, but hide the secret key.

It turns out that we also have “direct” ways of obtaining public key encryption and
fully homomorphic encryption from simple tools that do not go through obfuscation.
These examples are still interesting because they demonstrate the intuitive power and
broad usefulness of obfuscation in cryptography. Moreover, these two applications are
only the start — for many of the applications of obfuscation, the obfuscation-based
approach is the only approach we currently know.

Broader CS Theory Implications. Obfuscation also has connections to broader
CS theory concepts. For example, certain forms of obfuscation imply the hardness of
finding Nash equilibria.
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1.2 Difficulties

Obfuscation is a very challenging task. Indeed, someone who posses the program
has many ways to try to extract information. They can run the program on inputs
of their choice, and get to see all intermediate states of the program in addition to
the program output. They can even inject faults — changing the internal state —
and observing how that affects program behavior. They can do all of this, and yet
still should not be able to learn anything about the implementation details of the
program. Nonetheless, in this course we will see constructions of obfuscators that are
plausible secure against adversaries with even this level of access to the program.

2 Defining Obfuscation

Importance of definitions in cryptography. It will be important for our study
of obfuscation to give precise and rigorous definitions for what an obfuscator actu-
ally is. Such definitions give us a consistent language in which to study obfuscation.
Without definitions, it will be impossible to evaluate how well an obufscator obfus-
cates and compare different obfuscators. Thus, definitions are crucial to measure our
progress on building obfuscation. Since we are also interested in the theoretical im-
plications of obfuscation, definitions are imperative since we cannot prove a theorem
about concepts that are not rigorously defined. This need for definitions is by no
means unique to obfuscation: indeed, it is now the standard practice in cryptography
to give formal definitions, for exactly the reasons above.

Additional Considerations for Obfuscation. For obfuscation, there is perhaps
even more need for formal definitions. For example, consider the following. From
undergraduate CS theory courses, we know it is possible to take a program P , and
construct a program P ′ that outputs its own description. That is, P ′(x) = (P (x), P ′)1.
What happens when we obfuscate P ′? We get a program P̂ ′ that is functionally
equivalent to P ′. By running P̂ ′ on any input, one obtains P ′. Hence, the obfuscation
can easily be reversed.

More generally, consider any program P that is learn-able: given blackbox access
to the functionality of P , it is possible to recover P . Then any obfuscation of P , by
virtue of being functionally equivalent of P , can be “undone” to recover P . Therefore,
informal guarantees like “obfuscation hides the original program” cannot possibly be
true in general. We instead need a notion that permits some programs to be reverse-
engineered. Moreover, we need the notion to be completely formal in order to verify
that there are not any edge cases that make the notion impossible.

1Here, we are using P ′ as both a function (on the left-hand side) and data (on the right-hand
side). This will be a common occurrence the course
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2.1 Formal Definitions of Obfuscation

What properties should an obfuscator satisfy? Here are the obvious ones:

Functionality. The output of the obfuscator should clearly be a program, and the
program should have the same input/output behavior as the input program.

Efficiency of the obfuscator. The obfuscating algorithm should be “efficient.”
There’s no use for an obfuscator that takes a billion years to run. In this course, we
will take the “easy” approach and define an obfuscator as “efficient” if its running
time is polynomial in the size of the input (that is, the size of the input program
being obfuscated).

Efficiency of the obfuscated program. In addition to the obfuscating algorithm
being efficient, we ask that the obfuscated code is also efficient. Again, there’s no use
of an obfuscator that produces programs that take a billion years to run. Again, we
will take the “easy” approach, and say the obfuscated code is “efficient” if its running
time is polynomially related to the running time of the original program. So there is
some polynomial poly such that, if the original program runs in time t on some input,
the obfuscated program runs in time poly(t).

Now we move on to the more difficult aspects of defining obfuscation. In some of the
following, we will actually have some choices to make.

Model of computation. We need to formally define the model of computation we
will be working with. This is necessary for making sense of the efficiency require-
ments. Moreover, as we will see in this course, certain notions of obfuscation may
be achievable in some models of computation, but not others. There are two natural
choices for computational models: Turing Machines and Circuits. Turing Machine
obfuscation has the advantage of capturing programs that run on arbitrary-length in-
puts, whereas circuits have a fixed input size. However, as we will see when we start
to construct obfuscation, circuits are much easier to work with.

We will also discuss obfuscation for restricted models of computation. For example,
when building obfuscation, our starting point will be to obfuscate computations that
take the form of a “matrix branching program”. Matrix branching programs capture
programs computable by log-depth circuits.

Security. So far, the identity function satisfies all the requirements of an obfusca-
tor. What’s missing is a notion of security. It turns out that defining security for
obfuscation is tricky, as hinted at above. After all, what precisely does it mean to
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prevent reverse engineering of a program? If the program outputs a description of
itself, clearly it can be reverse engineered with zero effort. How should an obfuscator
behave in this case? Here are some potential definitions of security:

• Virtual Black Box Obfuscation (VBBO). This notion, informally, says that
anything learnable from the obfuscated code can be learned just from black box
access to the functionality — in other words, there is no point in looking at the
code, and instead you might as well just run the code on some inputs. More
formally,

Definition 1 (Virtual Black Box security for Obfuscation) An obfusca-
tor Obf is virtual black box secure if the following holds. For any probabilistic
polynomial time (PPT) adversary A, there exists a “simulator” S and a negli-
gible function negl such that for any program (Turing Machine/Circuit) P∣∣Pr[A(Obf(P )) = 1]− Pr[SP (|P |) = 1]

∣∣ < negl(|P |)

Here, S is probabilistic and runs in time polynomial in |P |. SP means that S
can make oracle queries to the functionality of P . Each query takes unit time.
For Turing machines, we also use the convention that, along with the intended
output, the program also outputs its running time.

We give the simulator |P | since the length of the program cannot be entirely
hidden by the obfuscation.

Remark 2 Notice that S actually runs in time exponential in the bit-length
of its input, since the bit-length of |P | is log |P |. Many authors will actually
represent |P | in unary, giving S the input 1|P |. In this case, S is actually a
polynomial time algorithm.

Remark 3 One could ask if restricting to polynomial time adversaries and sim-
ulators is necessary. Indeed, this has been the study of some works. However,
security against “efficient” adversaries is sufficient, and already a very difficult
goal. Moreover, as we will see later in the course, security against unbounded ad-
versaries is impossible under widely believed complexity assumptions. Therefore,
for the bulk of this course, we will only consider security against polynomial-time
adversaries.

One limitation of this definition is that security depends on having large pro-
grams. What if the program is constant size? To enable a meaningful notion in
this case, we do the following. First, the obfuscator Obf takes as input both a
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program P , and a “security parameter” λ. Increasing λ gives a “more secure”
obfuscation of the program. We will assume that it is possible to recover λ from
the obfuscated program, so that everyone knows what level of security was used
to obfuscate. The running time of Obf, and the running time of the obfuscated
program, are allowed to grow polynomially with λ.

Definition 4 (VBB security for Obfuscation, with Security Parameter)
An obfuscator Obf is virtual black box secure if the following holds. For any prob-
abilistic polynomial time (PPT) adversary A, there exists a “simulator” S and
a negligible function negl such that for any program (Turing Machine/Circuit)
P ∣∣Pr[A(Obf(P, λ)) = 1]− Pr[SP (|P |, λ) = 1]

∣∣ < negl(λ)

Here, S is probabilistic and runs in time polynomial in |P | and λ

Remark 5 Notice that Obf and S run in time exponential in the bit-length of
λ. Many authors will give λ to the algorithms in unary so that all algorithms
run in polynomial time.

As we will see next time, VBB obfuscation is in a sense “too strong.” This
is because there are actually programs where having access to the code of the
program (even if obfuscated) actually does give you more power that back-box
access. For this reason, we will need alternative definitions of security.

• Indistinguishability Obfuscation (iO). This is perhaps the most natural
alternative to VBB obfuscation. It roughly says that, if I have two programs
P1 and P2 that are equivalent (P1(x) = P2(x) for all x), and if I give you an
obfuscation of one of them, then you cannot tell which program was obfuscated.
We will take the approach above of separating out the security parameter from
the size of the obfuscated program.

Definition 6 (Indistinguishability Security for Obfuscation) An obfus-
cator Obf is indistinguishability secure if the following holds. For any two pro-
grams (Turing Machines/Circuits) P0, P1 that are equivalent (P0(x) = P1(x)∀x)
and have the same size, for any PPT adversary A, there exists a negligible func-
tion negl such that

|Pr[A(Obf(P0, λ)) = 1]− Pr[A(Obf(P1, λ)) = 1]| < negl(λ)

Taking a look at the definition of iO, we unfortunately seem to be moving
away from the intuition that obfuscation prevents reverse engineering. Indeed,
iO is only meaningful if you can give a second program with the exact same
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functionality. What if all programs that computed the functionality leaked the
secret you are trying to hide?

As we will see in a couple of lectures, nonetheless it is still possible to use
iO to solve almost any cryptographic task imaginable. And, perhaps just as
surprisingly, we will see constructions of obfuscation that plausibly satisfy this
notion. This is one of the reasons that iO has become the “industry accepted”
security definition for obfuscation.
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