COS 597C: Recent Developments in Program Obfuscation Princeton University
Homework 3 Due: 11:59pm, December 6, 2016

Homework 3

Problem 1: Annihilating More General Branching Programs. In this prob-
lem, we will see a nice way to extend the attack that we saw in class to a wider
class of programs (recall that in class, the attack only worked for “trivial” branching
programs). We will focus on the step of devising an annihilating polynomial for par-
ticular programs. Parts (a), (b), (c), and (e) are required. (d) is optional and extra
credit.

Part (a). Annihilating constant-degree polynomials. Fix a constant d. Sup-
pose there are n variables X1, ..., X, t polynomials in Xy, ..., X, p;(Xy,...,X,) for
1 =1,...,t, where each p; is a polynomial of degree d. t > n is sufficient to guarantee
an annihilating polynomial for the p;. However, if ¢ > n, it can potentially be much
easier to compute an annihilating polynomial.

Show how, in polynomial time, to compute an annihilating polynomial for
the p;, provided t is sufficiently large. How large does t need to be?

Hint: use linear algebra.

Part (b). Let BP be an arbitrary branching program computing a function P.
Consider the single input version of our first obfuscator (without the extra block
consisting of a random matrix), where each column of BP reads only a single bit.

For an element x such that P(xz) = 1 (so that zero testing gives 0), let 7, be the
element obtained from the zero testing procedure. Let Z be the bitwise complement
of z.

Compute the product 7, x T;. Notice something interesting happening?

Part (c). Combine Parts (a) and (b) to show how to efficiently compute annihilating
polynomials for general programs (in the single input setting).

Part (d) (Optional — this part is actually an open question, and extra
credit will be given to anyone who solves it). Generalizing to dual-input
programs. Construct family F' of subsets of {0, 1}" such that

e There are exponentially many subsets in F’



e There is a constant ¢ (independent of n) such that for every S € F, |S| = c.

e For every S € F, the product [ .47, will cause the a’s to combine as in Part
(b), even for dual input branching programs.

Use this family F' to show how to efficiently compute annihilating polynomials for
general programs in the dual-input setting.

Alternatively, show that such a family F' is impossible.

Part (e). The above attacks all operate in the weak ideal multilinear map model
discussed in class. We showed a modified obfuscator that is secure in this model.
Yet, the attack above apparently works for all branching programs. Explain this
apparent contradiction.

Note: don’t focus on dual input vs single input — this is not the issue. You can
assume that a positive solution to Part (d) has been found



