
COS 597C: Recent Developments in Program Obfuscation Princeton University
Homework 3 Due: 11:59pm, December 6, 2016

Homework 3

Problem 1: Annihilating More General Branching Programs. In this prob-
lem, we will see a nice way to extend the attack that we saw in class to a wider
class of programs (recall that in class, the attack only worked for “trivial” branching
programs). We will focus on the step of devising an annihilating polynomial for par-
ticular programs. Parts (a), (b), (c), and (e) are required. (d) is optional and extra
credit.

Part (a). Annihilating constant-degree polynomials. Fix a constant d. Sup-
pose there are n variables X1, . . . , Xn, t polynomials in X1, . . . , Xn, pi(X1, . . . , Xn) for
i = 1, . . . , t, where each pi is a polynomial of degree d. t > n is sufficient to guarantee
an annihilating polynomial for the pi. However, if t� n, it can potentially be much
easier to compute an annihilating polynomial.

Show how, in polynomial time, to compute an annihilating polynomial for
the pi, provided t is sufficiently large. How large does t need to be?

Hint: use linear algebra.

Part (b). Let BP be an arbitrary branching program computing a function P .
Consider the single input version of our first obfuscator (without the extra block
consisting of a random matrix), where each column of BP reads only a single bit.

For an element x such that P (x) = 1 (so that zero testing gives 0), let Tx be the
element obtained from the zero testing procedure. Let x̄ be the bitwise complement
of x.

Compute the product Tx × Tx̄. Notice something interesting happening?

Part (c). Combine Parts (a) and (b) to show how to efficiently compute annihilating
polynomials for general programs (in the single input setting).

Part (d) (Optional — this part is actually an open question, and extra
credit will be given to anyone who solves it). Generalizing to dual-input
programs. Construct family F of subsets of {0, 1}n such that

• There are exponentially many subsets in F

1

• There is a constant c (independent of n) such that for every S ∈ F , |S| = c.

• For every S ∈ F , the product
∏

x∈S Tx will cause the α’s to combine as in Part
(b), even for dual input branching programs.

Use this family F to show how to efficiently compute annihilating polynomials for
general programs in the dual-input setting.

Alternatively, show that such a family F is impossible.

Part (e). The above attacks all operate in the weak ideal multilinear map model
discussed in class. We showed a modified obfuscator that is secure in this model.
Yet, the attack above apparently works for all branching programs. Explain this
apparent contradiction.

Note: don’t focus on dual input vs single input — this is not the issue. You can
assume that a positive solution to Part (d) has been found

2

